radwan.png

Prof. Ahmed Radwan

Vice President for Research

Faculty Office Ext.

1758

Faculty Building

UB2

Office Number

S21

Biography

Ahmed G. Radwan is the vice president for research at Nile University, Egypt and a professor in Mathematics and Physics department in Cairo University, Egypt. Also, he is an IEEE senior member and a member of the Applied Science Research Council, Specialized Scientific Councils (SSC), ASRT, Egypt. R Radwan was the former director of Nanoelectronics Integrated Systems Center (NISC) in Nile University, Egypt and Technical Center for Career Development (TCCD) in Cairo University, Egypt. During 2008 and 2009, He was a visiting Professor in Computational Electromagnetic Lab (CEL), in the Electrical and Computer Engineering Department (ECE) in McMaster University, Canada. Then in 2009, he was selected to take part in the first foundation research teams to join King Abdullah University of Science and Technology (KAUST).

Dr. Radwan has 230+ papers, h-index 32, and more than 3000 citations based on the Scopus database. He is the Co-inventor of Six US patents, author/Co-author of Seven international books as well as 15-chapter books in the highly ranked publishers such as Elsevier and Springer. He received many research grants as Principle Investigator (PI), CO-PI, or Consultant from different national/international organizations. He was Invited to be Lead/Guest Editors in Journal of Circuits, Systems and Signal Processing, and Journal of Mathematical Problems in Engineering, and Complexity. He organized many special sessions, and participated as Technical Program Committee (TPC) in various international conferences. He was selected as a member of the first scientific council of Egyptian Young Academy of Sciences (EYAS) as well as in the first scientific council of the Egyptian Center for the Advancement of Science, Technology, and Innovation (ECASTI) to empower and encourage Egyptian young scientists in science and technology and build knowledge-based societies.

His research interests include interdisciplinary concepts between mathematics and engineering applications such as fractional-order systems, bifurcation, chaos, memristor, and encryption. Dr. Radwan was awarded various awards as follows: The Cairo University excellence award for research in the engineering sciences in 2016. The best researcher awards Nile University 2015 and 2016. The Abdul Hameed Shoman Award for Arab Researchers in basic sciences in 2015. The state achievements award for research in mathematical sciences in 2012. The Cairo University achievements award for research in the engineering sciences in 2013.

Recent Publications

Cole-Cole Bio-Impedance Parameters Extraction from a Single Time-Domain Measurement

We show that the four parameters of a single-dispersion Cole-Cole bio-impedance model can be extracted from an one time-domain measurement with a fixed frequency. In particular, a periodic triangle waveform current excitation signal is injected into the biological sample under study while measuring the voltage developed across this sample in a galvanostatic measurement setup. The voltage response

Circuit Theory and Applications
Software and Communications
Agriculture and Crops

Generalized two-port network based fractional order filters

This paper proposes a general prototype fractional order filter based on a two-port network concept with four external impedances. Three induced classifications from the general prototype are extracted with one, two and three external impedances, achieving ten possible generalized topologies. The external impedances are fractional-order elements and resistors. There are forty-six filters divided

Circuit Theory and Applications

General fractional order mem-elements mutators

This paper proposes the realization of grounded and floating fractional order mem-elements (FOMEs) based on two- and three-port mutators, respectively. Three different topologies based on two-port mutators are implemented using the four members of the second-generation current conveyor (CCII) family which is useful to achieve several realizations for the same circuit. The Fractional Order Mem

Circuit Theory and Applications

Impact of oustaloup and matsuda approximations on fractional pid controller of pv panel

Due to the non-linear relation between current and voltage of the PV modules, DC/DC power electronic converters are used to adapt this non-linearity. Controllers are used to control the DC/DC converters in order that, they can take actions against changes in irradiance input levels, temperature input levels and load values. In this study, a standalone PV system that feeds a DC load is simulated

Circuit Theory and Applications

Heating and Freezing Injury to Plant Tissues and Their Effect on Bioimpedance: Experimental Study

Electrochemical Impedance Spectroscopy (EIS) has been used as a technique for the assessment of food attributes. This paper discusses the effect of injuries caused by heating and freezing treatments to plant's bioimpedance. Unlike other studies to these kinds of injuries, experiments are carried out on the whole fruit using non-invasive electrodes keeping the plant tissues unharmed. Moreover, one

Circuit Theory and Applications

Digital Emulation of a Versatile Memristor with Speech Encryption Application

Memristor characteristics such as nonlinear dynamics, state retention and accumulation are useful for many applications. FPGA implementation of memristor-based systems and algorithms provides fast development and verification platform. In this work, we first propose a versatile digital memristor emulator that exhibits either continuous or discrete behaviors, similar to valence change memories (VCM

Circuit Theory and Applications

Chaotic Flower Pollination and Grey Wolf Algorithms for parameter extraction of bio-impedance models

Precise parameter extraction of the bio-impedance models from the measured data is an important factor to evaluate the physiological changes of plant tissues. Traditional techniques employed in the literature for this problem are not robust which reflects on their accuracy. In this paper, the Flower Pollination Algorithm (FPA), the Grey Wolf Optimizer (GWO) and ten of their chaotic variants are

Circuit Theory and Applications

All-Dynamic Synchronization of Rotating Fractional-Order Chaotic Systems

This paper proposes generalized controllable strange attractors through dynamic rotation of fractional-order chaotic systems. Dynamic rotation angle enables the generation of multi-scroll and multi-wing attractors from single and double-scroll ones. The rotating systems are integrated with a generalized dynamic switched synchronization scheme. Dynamic control switches determine whether each system

Circuit Theory and Applications
Mechanical Design

Synchronization and FPGA realization of fractional-order Izhikevich neuron model

This paper generalizes the Izhikevich neuron model in the fractional-order domain for better modeling of neuron dynamics. Accurate and computationally efficient numerical techniques such as non-standard finite difference (NSFD) scheme is used to solve the neuron system in the fractional-order domain for different cases. Neuron synchronization plays an important role in the process of information

Circuit Theory and Applications
Research Tracks

1) Fractional-Order Systems

2) Memristor

3) Bifurcation

4) Encryption

5) Chaos

Projects
3
Research Project

Wireless Monitoring of Fruit Growth Using an Electrical BioImpedance Sensor Device

The idea of this project is to graph the quality of fruits and vegetables similar to ECG in humans. The purpose of this project is to build a prototype for a portable wireless electronic device capable of measuring live tissue with fruits or vegetables using bioimpedance and some mathematical & electrical models then transmitting data to the base station. This project will add scientific and
Chaotic
Research Project

Software Algorithm and Hardware Implementations of Information Security Using Number Theory and Chaotic Systems

The project aims at proposing novel software algorithms for information security and their hardware implementations. The algorithms will utilize different methods based on number theory and chaos theory. Cryptography and information hiding systems will be developed for different media data types such as text, image, audio and video. The project will investigate different classes of symmetric
5
Research Project

Ternary Logic Gates Design

Nowadays, the demand for building CNTFET-based ternary systems has been increasing. The current two-level binary logic and MOSFET technology have been facing limitations in chip size, design complexity, and power consumption. In this proposal, the method to design Ternary logic gates based on CNTFET and Memristor is proposed. Implementing Ternary Full-Adders and Multipliers is also discussed in
3
Research Project

Two Port Fractional-order Oscillators and Filters Suitable for Tissue Modeling

Objective: This project aims to study the relation between the mathematical fundamentals of fractional calculus and the concept of two-port circuit networks in the design of oscillators and filters with their analyses. These concepts will be applied to the Cole-Cole model, suitable for agriculture and biomedical applications tissue modelling. Outcomes: Literature Surveys (2 Journals + 2 Chapters)
00
Research Project

Fractional order Image Processing Platform for Retinal Pigmontosa Patients

Objective/Contributions: Investigation and categorization of the different methodologies in fractional operator discretization. Investigate the effect of the number of memory samples on the performance of different discretization schemes and recommend the scheme which gives the best performance for the least number of memory samples. Discuss the stability analysis of the discretized operators and
Research Project

Multi-stage Low-cost Treatment of Dyes and Paints Wastewater by Coagulation, Adsorption, and Filtration for Reuse in Several Application

Objective/Contributions: Designing and constructing a low-cost, efficient, rapid environmentally friendly treatment system for textile and paint industries' recycling and treatment. Conducting a comprehensive literature database of all the reuse and treatment methods, in paints wastewater treatment and all the pilot plants, and treatment plants used success stories that successfully reduce the