radwan.png

Prof. Ahmed Radwan

Vice President for Research

Faculty Office Ext.

1758

Faculty Building

UB2

Office Number

S21

Biography

Prof. Ahmed G. Radwan (SMIEEE, Fellow-AAS) is the Vice-President for Research, and Dean of Graduate Studies at Nile University, Egypt. He is the Founder and general co-Chair of NILES International Conference, and also the Founder and Chair of the Undergraduate Research Forum (UGRF) at Nile University. He has a total number of indexed publications of 475+, more than 11,000 citations and h-index: 55 according to Scopus.

He is a Co-inventor of 6 US patents, author/co-author of 12 international books as well as 18 book chapters in the highly ranked publishers. Prof. Radwan is leading the fractional-order circuits track worldwide. He is an associate editor in 4 prestigious Scopus-indexed journals and TC member in IEEE CASS. Some of his prestigious Awards: The State Encouragement Award, The State Excellence Award, Abdul Hameed Shoman Award, Scopus Award in Engineering and Technology, Prof. Tarek Khalil Award 2022 for Distinguished Leadership from Nile university and many more. He managed funded projects with budgets over 10M EGP and supervised more than 50 (Master's & Ph.Ds.).

Recent Publications

Generalized α+β-order Filter Based on Single CCII

Different generalized filters topologies are proposed in the fractional-order domain. Three voltage-mode topologies and one current-mode topology are used to realize several types of fractional-order filters by applying different admittances combinations. The proposed topologies are designed using a single second-generation current conveyor (CCII-) and two fractional-order capacitors, which add

Circuit Theory and Applications

Fractional-order Memristor Emulator with Multiple Pinched Points

The paper proposes voltage-controlled first-and second-order memristor emulators. The emulators are designed using an operational-transconductance amplifier (OTA) and voltage multiplier blocks plus a fractional-order capacitor. The presented second-order emulator provides two pinched points controlled by order of the employed fractional-order capacitor. Numerical and PSPICE simulation results

Circuit Theory and Applications

Fractional calculus definitions, approximations, and engineering applications

The basic idea behind fractional calculus is that it considers derivatives and integrals of non-integer orders giving extra degrees of freedom and tuning knobs for modeling complex and memory dependent systems with compact descriptions. This paper reviews fractional calculus history, theory, and its applications in electrical engineering. The basic definitions of fractional calculus are presented

Circuit Theory and Applications

Fractional-Order Generalized Gene Regulation Model CCII-Based Practical Emulator

This paper presents a practical emulator of a generalised fractional-order model for gene regulation process, in an analog platform. The presented emulator is based on the second-generation current conveyor (CCII) and implemented using AD844 chips. The emulator realises a proposed generalised mathematical model for gene expression. The model sums up three different single models; the constitutive

Circuit Theory and Applications

Software and Hardware Implementation Sensitivity of Chaotic Systems and Impact on Encryption Applications

This paper discusses the implementation sensitivity of chaotic systems added to their widely discussed sensitivities to initial conditions and parameter variation. This sensitivity can cause mismatches in some applications, which require an exact duplication of the system, e.g., chaos-based cryptography, synchronization and communication. Specifically, different implementation cases of three

Circuit Theory and Applications

A novel image encryption system merging fractional-order edge detection and generalized chaotic maps

This paper presents a novel lossless image encryption algorithm based on edge detection and generalized chaotic maps for key generation. Generalized chaotic maps, including the fractional-order, the delayed, and the Double-Humped logistic maps, are used to design the pseudo-random number key generator. The generalization parameters add extra degrees of freedom to the system and increase the

Circuit Theory and Applications

FPGA implementation of a chaotic oscillator with odd/even symmetry and its application

We propose a mathematical system capable of exhibiting chaos with a chaotic attractor which is odd symmetrical in the x − y phase plane but even symmetrical in the x − z and y − z phase planes respectively. A hardware implementation of the system is done on a digital FPGA platform for verification. The system is also attractive in the sense that (i) its dynamics are single-parameter controlled and

Circuit Theory and Applications

Enhanced FPGA realization of the fractional-order derivative and application to a variable-order chaotic system

The efficiency of the hardware implementations of fractional-order systems heavily relies on the efficiency of realizing the fractional-order derivative operator. In this work, a generic hardware implementation of the fractional-order derivative based on the Grünwald–Letnikov’s approximation is proposed and verified on a field-programmable gate array. The main advantage of this particular

Circuit Theory and Applications

Generic FPGA Design of Spiking Neuron Model

This paper introduces a new representation of the human brain neuron cell response. Implementation of a single cell model of an excitatory and inhibitory neuron. The architecture is based on mimic the real reaction of the neuron cell. Excitatory and inhibitory are implemented in generic form for all neuron's behavior. The design is tested experimentally using FPGA. The designs have been realized

Circuit Theory and Applications
Research Tracks

1) Fractional-Order Systems

2) Memristor

3) Bifurcation

4) Encryption

5) Chaos

Projects
3
Research Project

Wireless Monitoring of Fruit Growth Using an Electrical BioImpedance Sensor Device

The idea of this project is to graph the quality of fruits and vegetables similar to ECG in humans. The purpose of this project is to build a prototype for a portable wireless electronic device capable of measuring live tissue with fruits or vegetables using bioimpedance and some mathematical & electrical models then transmitting data to the base station. This project will add scientific and
Chaotic
Research Project

Software Algorithm and Hardware Implementations of Information Security Using Number Theory and Chaotic Systems

The project aims at proposing novel software algorithms for information security and their hardware implementations. The algorithms will utilize different methods based on number theory and chaos theory. Cryptography and information hiding systems will be developed for different media data types such as text, image, audio and video. The project will investigate different classes of symmetric
3
Research Project

FPGA/FPAA Implementation of Fractional-order Systems

Fractional Calculus (FC) has been proved through numerous research examples to be a superior tool for system description to the narrow integer order domain. This is achieved through the extra parameters introduced by allowing the differential or integral orders to take non-integer values. The promising capabilities of fractional-order devices challenge the research to find a way to simulate its
5
Research Project

Ternary Logic Gates Design

Nowadays, the demand for building CNTFET-based ternary systems has been increasing. The current two-level binary logic and MOSFET technology have been facing limitations in chip size, design complexity, and power consumption. In this proposal, the method to design Ternary logic gates based on CNTFET and Memristor is proposed. Implementing Ternary Full-Adders and Multipliers is also discussed in
3
Research Project

Two Port Fractional-order Oscillators and Filters Suitable for Tissue Modeling

Objective: This project aims to study the relation between the mathematical fundamentals of fractional calculus and the concept of two-port circuit networks in the design of oscillators and filters with their analyses. These concepts will be applied to the Cole-Cole model, suitable for agriculture and biomedical applications tissue modelling. Outcomes: Literature Surveys (2 Journals + 2 Chapters)
1
Research Project

Development and Manufacturing of Soft Actuated Under Water Robotics

Objective/Contributions: Surveying research papers about transferring hard robot characteristics to soft one. Use additive manufacturing techniques to minimize the assembly process of the ROV actuator. Work on soft control and soft sensing system and study its ability to be used in soft robotics. Discuss biomimicking ROV. Create a hub for soft robotics at Nile University for participating in Egypt
00
Research Project

Fractional order Image Processing Platform for Retinal Pigmontosa Patients

Objective/Contributions: Investigation and categorization of the different methodologies in fractional operator discretization. Investigate the effect of the number of memory samples on the performance of different discretization schemes and recommend the scheme which gives the best performance for the least number of memory samples. Discuss the stability analysis of the discretized operators and
img
Research Project

An Underwater AR based System for Marine Life Detection and Classification for Divers and Tourists

Objective/Contributions: Collecting and annotating an extensive dataset of fish images representing the fish species in the red sea. Building a machine learning model capable of detecting and classifying fish species from a real-time video. Building a proof-of-concept prototype for the AR hardware that is capable of capturing the live video of marine life, running the classification model, and
Research Project

Multi-stage Low-cost Treatment of Dyes and Paints Wastewater by Coagulation, Adsorption, and Filtration for Reuse in Several Application

Objective/Contributions: Designing and constructing a low-cost, efficient, rapid environmentally friendly treatment system for textile and paint industries' recycling and treatment. Conducting a comprehensive literature database of all the reuse and treatment methods, in paints wastewater treatment and all the pilot plants, and treatment plants used success stories that successfully reduce the
77
Research Project

Bio-Mimetic Locomotion of Soft Turtle Robot

Abstract Amphibious robots have great potential for a variety of applications, but their design can be complex and expensive. Bio-inspired soft robotics offers a promising solution, as their actuators can perform evenly on land and underwater. Our robot takes inspiration from turtle locomotion as it bridges the gap between traditional four-legged robots and swimming robots. The robot can be
77
Research Project

Bio-inspired Soft Robot for Monitoring Coral Reefs

Abstract Coral reefs play a crucial role in supporting a quarter of all aquatic life, but their existence is now threatened by ongoing climate changes. Our project aims to develop an underwater soft robot that can mimic the morphology and shape of actual marine creatures and to imitate their swimming motion. This robot can play a critical role as monitoring platform to understand the reefs