radwan.png

Prof. Ahmed Radwan

Vice President for Research

Faculty Office Ext.

1758

Faculty Building

UB2

Office Number

S21

Biography

Ahmed G. Radwan is the vice president for research at Nile University, Egypt and a professor in Mathematics and Physics department in Cairo University, Egypt. Also, he is an IEEE senior member and a member of the Applied Science Research Council, Specialized Scientific Councils (SSC), ASRT, Egypt. R Radwan was the former director of Nanoelectronics Integrated Systems Center (NISC) in Nile University, Egypt and Technical Center for Career Development (TCCD) in Cairo University, Egypt. During 2008 and 2009, He was a visiting Professor in Computational Electromagnetic Lab (CEL), in the Electrical and Computer Engineering Department (ECE) in McMaster University, Canada. Then in 2009, he was selected to take part in the first foundation research teams to join King Abdullah University of Science and Technology (KAUST).

Dr. Radwan has 230+ papers, h-index 32, and more than 3000 citations based on the Scopus database. He is the Co-inventor of Six US patents, author/Co-author of Seven international books as well as 15-chapter books in the highly ranked publishers such as Elsevier and Springer. He received many research grants as Principle Investigator (PI), CO-PI, or Consultant from different national/international organizations. He was Invited to be Lead/Guest Editors in Journal of Circuits, Systems and Signal Processing, and Journal of Mathematical Problems in Engineering, and Complexity. He organized many special sessions, and participated as Technical Program Committee (TPC) in various international conferences. He was selected as a member of the first scientific council of Egyptian Young Academy of Sciences (EYAS) as well as in the first scientific council of the Egyptian Center for the Advancement of Science, Technology, and Innovation (ECASTI) to empower and encourage Egyptian young scientists in science and technology and build knowledge-based societies.

His research interests include interdisciplinary concepts between mathematics and engineering applications such as fractional-order systems, bifurcation, chaos, memristor, and encryption. Dr. Radwan was awarded various awards as follows: The Cairo University excellence award for research in the engineering sciences in 2016. The best researcher awards Nile University 2015 and 2016. The Abdul Hameed Shoman Award for Arab Researchers in basic sciences in 2015. The state achievements award for research in mathematical sciences in 2012. The Cairo University achievements award for research in the engineering sciences in 2013.

Recent Publications

A Modified Differentiator Circuit for Extracting Cole-Impedance Model Parameters Using Meta-heuristic Optimization Algorithms

A differentiator-based set up is proposed as an alternative solution to measure bio-impedance. The method is modifying the differentiator circuit, replacing the capacitor with the Cole-impedance model representing the biological (fruit) sample. The proposed differentiator gain response (with the embedded fruit) is experimentally recorded. The experimental data’s post-processing is performed using

Circuit Theory and Applications

Fractional derivative modeling of double-diffusive free convection with von Neumann stability analysis

This paper focuses on the problem of fractional time derivative of fluid flow and convective heat and mass transfer from a heated semi-infinite wall immersed. We provided two cases of study, one is free convective heat transfer and the other is a free double-convective heat and mass transfer. The time-derivative terms in the equations of momentum, energy and concentration are assumed to be

Circuit Theory and Applications
Mechanical Design

A switched chaotic encryption scheme using multi-mode generalized modified transition map

This paper presents a multi-mode generalized modified transition chaotic map and a switched chaotic encryption scheme based on it. Eight different modes of operation can be selected based on the map graph (concave or convex), the range modification procedure (shrinking or widening) and the sign of one of its independent parameters. The generalization and modification preserve the controllability

Circuit Theory and Applications
Software and Communications

Enhanced hardware implementation of a mixed-order nonlinear chaotic system and speech encryption application

This paper introduces a study for the effect of using different floating-point representations on the chaotic system's behaviour. Also, it offers a comparison between the attractors at three different orders, (integer, fractional, and mixed-order). This comparison shows the minimum number of bits needed for all parameters to simulate the chaotic attractor in each case. Numerical simulations using

Circuit Theory and Applications

Emulation circuits of fractional-order memelements with multiple pinched points and their applications

This paper proposes voltage- and current-controlled universal memelements emulators. They are employed to realize the floating and grounded fractional-order memelements. The proposed emulators are implemented using different active blocks such as the second-generation current conveyor (CCII), Differential input double output transconductance amplifier (DOTA + ), balanced output CCII, and

Circuit Theory and Applications

On the Approximations of CFOA-Based Fractional-Order Inverse Filters

In this paper, three novel fractional-order CFOA-based inverse filters are introduced. The inverse low-pass, high-pass and band-pass responses are investigated using different approximation techniques. The studied approximations for the fractional-order Laplacian operator are the continued fraction expansion and Matsuda approximations. A comparison is held between the ideal filter characteristic

Circuit Theory and Applications

A general emulator for fractional-order memristive elements with multiple pinched points and application

In this paper, X-controlled universal fractional-order memelements (FOMEs) emulator is proposed. The emulation circuit is realized using second-generation current conveyor (CCII) and analog voltage multiplier (AVM)/divider block with two switches to control the type of memelements and emulator mode. The effect of the fractional-order capacitor (FOC) on the pinched hysteresis loop (HL) area and the

Circuit Theory and Applications

Numerical Simulations and FPGA Implementations of Fractional-Order Systems Based on Product Integration Rules

Product integration (PI) rules are well known numerical techniques that are used to solve differential equations of integer and, recently, fractional orders. Due to the high memory dependency of the PI rules used in solving fractional-order systems (FOS), their hardware implementation is very difficult and resources-demanding. In this paper, modified versions of the PI rules are introduced to

Circuit Theory and Applications

FPGA implementation of integer/fractional chaotic systems

Chaotic systems have remarkable importance in capturing some complex features of the physical process. Recently, fractional calculus becomes a vigorous tool in characterizing the dynamics of complex systems. The fractional-order chaotic systems increase the chaotic behavior in new dimensions and add extra degrees of freedom, which increase system controllability. In this chapter, FPGA

Circuit Theory and Applications
Research Tracks

1) Fractional-Order Systems

2) Memristor

3) Bifurcation

4) Encryption

5) Chaos

Projects
3
Research Project

Wireless Monitoring of Fruit Growth Using an Electrical BioImpedance Sensor Device

The idea of this project is to graph the quality of fruits and vegetables similar to ECG in humans. The purpose of this project is to build a prototype for a portable wireless electronic device capable of measuring live tissue with fruits or vegetables using bioimpedance and some mathematical & electrical models then transmitting data to the base station. This project will add scientific and
Chaotic
Research Project

Software Algorithm and Hardware Implementations of Information Security Using Number Theory and Chaotic Systems

The project aims at proposing novel software algorithms for information security and their hardware implementations. The algorithms will utilize different methods based on number theory and chaos theory. Cryptography and information hiding systems will be developed for different media data types such as text, image, audio and video. The project will investigate different classes of symmetric
5
Research Project

Ternary Logic Gates Design

Nowadays, the demand for building CNTFET-based ternary systems has been increasing. The current two-level binary logic and MOSFET technology have been facing limitations in chip size, design complexity, and power consumption. In this proposal, the method to design Ternary logic gates based on CNTFET and Memristor is proposed. Implementing Ternary Full-Adders and Multipliers is also discussed in
3
Research Project

Two Port Fractional-order Oscillators and Filters Suitable for Tissue Modeling

Objective: This project aims to study the relation between the mathematical fundamentals of fractional calculus and the concept of two-port circuit networks in the design of oscillators and filters with their analyses. These concepts will be applied to the Cole-Cole model, suitable for agriculture and biomedical applications tissue modelling. Outcomes: Literature Surveys (2 Journals + 2 Chapters)
00
Research Project

Fractional order Image Processing Platform for Retinal Pigmontosa Patients

Objective/Contributions: Investigation and categorization of the different methodologies in fractional operator discretization. Investigate the effect of the number of memory samples on the performance of different discretization schemes and recommend the scheme which gives the best performance for the least number of memory samples. Discuss the stability analysis of the discretized operators and
Research Project

Multi-stage Low-cost Treatment of Dyes and Paints Wastewater by Coagulation, Adsorption, and Filtration for Reuse in Several Application

Objective/Contributions: Designing and constructing a low-cost, efficient, rapid environmentally friendly treatment system for textile and paint industries' recycling and treatment. Conducting a comprehensive literature database of all the reuse and treatment methods, in paints wastewater treatment and all the pilot plants, and treatment plants used success stories that successfully reduce the