about.jpg

Fully balanced LED driving circuit for optogenetics stimulation

Implantable probes with built-in light emitters have a promising potential for a range of applications, in particular optogenetic neural stimulation. However, where soft encapsulation methods are used, lifetime will be a function of the quality of encapsulation and the driving mechanism. We have found that a balanced driving mechanism - whereby the integral voltage on encapsulated contacts, can significantly prolong lifetimes. As such, in this work, we have designed a driving circuit that drives current but ensures balanced electric fields with an error of less than 1%. The circuit has been

Circuit Theory and Applications
Software and Communications

Reactance-less RM relaxation oscillator using exponential memristor model

Recently, the memristor based relaxation oscillators become an important topic in circuit theory where the reactive elements are replaced by memristor which occupies a very small area. In this paper, a design of memristor-based relaxation oscillator is introduced based on exponential memristor model. Unlike previously published oscillators which were built based on a simple memristor model, the exponential model is used, as a generalized model, to verify the concept of memristor based RM oscillator using a model that has electrical characteristic very close to the fabricated device. First, the

Circuit Theory and Applications

Preface

[No abstract available]

Circuit Theory and Applications

Preface

[No abstract available]

Circuit Theory and Applications

Preface

[No abstract available]

Circuit Theory and Applications

Preface

[No abstract available]

Circuit Theory and Applications

PREFACE

[No abstract available]

Circuit Theory and Applications

PREFACE

[No abstract available]

Circuit Theory and Applications

Chaos synchronisation of continuous systems via scalar signal

By analyzing the issue of chaos synchronization in the literature, it can be noticed the lack of a general approach, which would enable any type of synchronization to be achieved. Similarly, there is the lack of a unified method for synchronizing both continuous-time and discrete-time systems via a scalar signal. This paper and the companion one [1] aim to bridge these two gaps by presenting a novel general unified framework to synchronize chaotic systems via a scalar signal. The framework, based on the concept of observer, enables any type of synchronization defined to date to be achieved for

Circuit Theory and Applications

On the realization of Current-Mode Fractional-order Simulated Inductors

The objective of this work is to revisit the design criteria of current-mode simulated inductors in order to realize their fractional-order versions. Numerical simulations and SPICE circuits simulations are carried out on these generalized fractional-order simulated inductors. As well, fractional-order low pass filters based on the proposed circuits are realized and validated. © 2019 IEEE.

Circuit Theory and Applications