radwan.png

Prof. Ahmed Radwan

Vice President for Research

Faculty Office Ext.

1758

Faculty Building

UB2

Office Number

S21

Biography

Ahmed G. Radwan is the vice president for research at Nile University, Egypt and a professor in Mathematics and Physics department in Cairo University, Egypt. Also, he is an IEEE senior member and a member of the Applied Science Research Council, Specialized Scientific Councils (SSC), ASRT, Egypt. R Radwan was the former director of Nanoelectronics Integrated Systems Center (NISC) in Nile University, Egypt and Technical Center for Career Development (TCCD) in Cairo University, Egypt. During 2008 and 2009, He was a visiting Professor in Computational Electromagnetic Lab (CEL), in the Electrical and Computer Engineering Department (ECE) in McMaster University, Canada. Then in 2009, he was selected to take part in the first foundation research teams to join King Abdullah University of Science and Technology (KAUST).

Dr. Radwan has 230+ papers, h-index 32, and more than 3000 citations based on the Scopus database. He is the Co-inventor of Six US patents, author/Co-author of Seven international books as well as 15-chapter books in the highly ranked publishers such as Elsevier and Springer. He received many research grants as Principle Investigator (PI), CO-PI, or Consultant from different national/international organizations. He was Invited to be Lead/Guest Editors in Journal of Circuits, Systems and Signal Processing, and Journal of Mathematical Problems in Engineering, and Complexity. He organized many special sessions, and participated as Technical Program Committee (TPC) in various international conferences. He was selected as a member of the first scientific council of Egyptian Young Academy of Sciences (EYAS) as well as in the first scientific council of the Egyptian Center for the Advancement of Science, Technology, and Innovation (ECASTI) to empower and encourage Egyptian young scientists in science and technology and build knowledge-based societies.

His research interests include interdisciplinary concepts between mathematics and engineering applications such as fractional-order systems, bifurcation, chaos, memristor, and encryption. Dr. Radwan was awarded various awards as follows: The Cairo University excellence award for research in the engineering sciences in 2016. The best researcher awards Nile University 2015 and 2016. The Abdul Hameed Shoman Award for Arab Researchers in basic sciences in 2015. The state achievements award for research in mathematical sciences in 2012. The Cairo University achievements award for research in the engineering sciences in 2013.

Recent Publications

A universal floating fractional-order elements/memelements emulator

In this paper, a generalized floating emulator block is proposed using grounded elements. The proposed emulator is a universal emulator that is used to realize any floating elements such as fractional-order element (FOE) and fractional-order memelements (FOME). Different implementations for the introduced emulator are presented using different active blocks and generalized impedances. The

Circuit Theory and Applications

Preface

[No abstract available]

Circuit Theory and Applications

Fractional-Order Model (FOM) for high-strength substrate biodegradation in conventional UASB reactor

This paper introduces a Fractional-Order Model (FOM) of Up-flow Anaerobic Sludge Blanket (UASB) reactor for wastewater treatment regarding high-strength substrate biodegradation. The model can investigate the biogas production rate as well as the specific growth rate of bacteria with extra degree of freedom. Also, the hereditary effect of resident biomass on substrate degradation is studied on

Energy and Water
Circuit Theory and Applications

Two topologies of fractional-order oscillators based on CFOA and RC networks

This paper presents two general topologies of fractional order oscillators. They employ Current Feedback Op-Amp (CFOA) and RC networks. Two RC networks are investigated for each presented topology. The general oscillation frequency, condition and the phase difference between the oscillatory outputs are investigated in terms of the fractional order parameters. Numerical simulations and P-Spice

Circuit Theory and Applications

FPGA implementation of fractional-order Chua's chaotic system

This paper introduces FPGA implementation of fractional order double scrolls chaotic system based on Chua circuit. Grunwald-Letnikov's (GL) definition is used to generalize the chaotic system equations into the fractional-order domain. Xilinx ISE 14.5 is used to simulate the proposed design and Artix-7 XC7A100T FPGA is used for system realization. Experimental results are presented on digital

Circuit Theory and Applications

Implementation of a Pulsed-Wave Spectral Doppler Module on a Programmable Ultrasound System

Pulsed wave Doppler ultrasound is commonly used in the diagnosis of cardiovascular and blood flow abnormalities. Doppler techniques have gained clinical significance due to its safety, real-time performance and affordability. This work presents the development of a pulsed wave spectral Doppler module, which was integrated into a reconfigurable ultrasound system. The targeted system adopts a

Healthcare
Circuit Theory and Applications
Mechanical Design
Innovation, Entrepreneurship and Competitiveness

Experimental verification of triple lobes generation in fractional memristive circuits

Recently, the triple-lobe behavior is found in the I-V characteristics of some memristive devices generating another non-zero pinchoff point. In this paper, a flux-controlled memristive model is developed to generate the triple-lobe behavior (double pinchoff points) based on a fractional second-order model. The conditions for observing triple lobes are derived besides the coordinates of the

Circuit Theory and Applications

FPGA implementation of fractional-order integrator and differentiator based on Grünwald Letnikov's definition

The fractional-order derivative and integral of Grünwald Letnikov's definition are implemented based on FPGA for different fractional orders. A new algorithm is proposed to implement the GL integral based on linear approximation approach, where the memory dependency of the fractional order systems is eliminated. Moreover, the linear approximation design shows an improvement of 91% and 92% in the

Circuit Theory and Applications

Study of fractional flux-controlled memristor emulator connections

In this paper, the series and parallel connections of the fractional flux-controlled memristors are studied. Asymmetric I-V hysteresis with high I-V nonlinearity can be obtained from single fractional memristor as reported in literature. However, connecting different memristor emulators can convert the asymmetric hysteresis to symmetric one and maintaining the high I-V nonlinearity to be used in

Circuit Theory and Applications
Innovation, Entrepreneurship and Competitiveness
Research Tracks

1) Fractional-Order Systems

2) Memristor

3) Bifurcation

4) Encryption

5) Chaos

Projects
3
Research Project

Wireless Monitoring of Fruit Growth Using an Electrical BioImpedance Sensor Device

The idea of this project is to graph the quality of fruits and vegetables similar to ECG in humans. The purpose of this project is to build a prototype for a portable wireless electronic device capable of measuring live tissue with fruits or vegetables using bioimpedance and some mathematical & electrical models then transmitting data to the base station. This project will add scientific and
Chaotic
Research Project

Software Algorithm and Hardware Implementations of Information Security Using Number Theory and Chaotic Systems

The project aims at proposing novel software algorithms for information security and their hardware implementations. The algorithms will utilize different methods based on number theory and chaos theory. Cryptography and information hiding systems will be developed for different media data types such as text, image, audio and video. The project will investigate different classes of symmetric
5
Research Project

Ternary Logic Gates Design

Nowadays, the demand for building CNTFET-based ternary systems has been increasing. The current two-level binary logic and MOSFET technology have been facing limitations in chip size, design complexity, and power consumption. In this proposal, the method to design Ternary logic gates based on CNTFET and Memristor is proposed. Implementing Ternary Full-Adders and Multipliers is also discussed in
3
Research Project

Two Port Fractional-order Oscillators and Filters Suitable for Tissue Modeling

Objective: This project aims to study the relation between the mathematical fundamentals of fractional calculus and the concept of two-port circuit networks in the design of oscillators and filters with their analyses. These concepts will be applied to the Cole-Cole model, suitable for agriculture and biomedical applications tissue modelling. Outcomes: Literature Surveys (2 Journals + 2 Chapters)
00
Research Project

Fractional order Image Processing Platform for Retinal Pigmontosa Patients

Objective/Contributions: Investigation and categorization of the different methodologies in fractional operator discretization. Investigate the effect of the number of memory samples on the performance of different discretization schemes and recommend the scheme which gives the best performance for the least number of memory samples. Discuss the stability analysis of the discretized operators and
Research Project

Multi-stage Low-cost Treatment of Dyes and Paints Wastewater by Coagulation, Adsorption, and Filtration for Reuse in Several Application

Objective/Contributions: Designing and constructing a low-cost, efficient, rapid environmentally friendly treatment system for textile and paint industries' recycling and treatment. Conducting a comprehensive literature database of all the reuse and treatment methods, in paints wastewater treatment and all the pilot plants, and treatment plants used success stories that successfully reduce the