about.jpg

Filter by

GSK-RL: Adaptive Gaining-sharing Knowledge algorithm using Reinforcement Learning

Meta-heuristics and nature inspired algorithms have been prominent solvers for highly complex, nonlinear and hard optimization problems. The Gaining-Sharing Knowledge algorithm (GSK) is a recently proposed nature-inspired algorithm, inspired by human and their tendency towards growth and gaining and sharing knowledge with others. The GSK algorithm have been applied to different optimization

Artificial Intelligence
Circuit Theory and Applications

Crypto-SAP Protocol for Sybil Attack Prevention in VANETs

VANETs are considered as sub-category from MANETs. They provide the vehicles with the ability of communication among each other to guarantee safety and provide services for drivers. VANETs have many network vulnerabilities like: Working on wireless media makes it vulnerable to many kinds of attacks and nodes can join or leave the network dynamically making change in its topology which affects

Artificial Intelligence

Sentiment Analysis using Machine Learning and Deep Learning Models on Movies Reviews

The huge amount of data being generated and transferred each day on the Internet leads to an increase of the need to automate knowledge-extraction tasks. Sentiment analysis is an ongoing research field in knowledge extraction that faces many challenges. In this paper, different machine learning, neural networks, deep learning models were evaluated over the IMDB benchmark dataset for movies reviews

Artificial Intelligence

Optimal fractional-order PI with DC-DC converter and PV system

This paper presents a design and analysis for the PV system with a DC-DC boost converter controlled by the Fractional Order PI controller (FOPI). The study includes obtaining the optimal parameters for the PV model and the operating parameters for the FOPI controller. The first part's objective function is to search a five-parameter model based on the data-sheet given by commercial PV modules for

Circuit Theory and Applications

α -order universal filter realization based on single input multi-output differential voltage current conveyor

Two voltage-mode topologies single input multi-output universal fractional filters with high input impedance are proposed. The proposed analog filters consist of three DVCC+ blocks, two grounded capacitors and two resistors targeting the minimum passive elements. The proposed topologies provide a realization for all standard fractional filter functions (HP, LP, BP, AP and notch filter). The effect

Circuit Theory and Applications

Review organic solar cells parameters extraction and characterization techniques

Organic photovoltaic research is continuing in order to improve the efficiency and stability of the products. Organic devices have recently demonstrated excellent efficiency, bringing them closer to the market. Understanding the relationship between the microscopic parameters of the device and the conditions under which it is prepared and operated is essential for improving performance at the

Software and Communications

Systematic university decision making based on footprint identifiers

A new systematic decision-making framework for universities is presented. The framework avoids the disadvantages of the balanced score cards technique. A solid mathematical technique is provided for mapping processes and quality items. Application to the Egyptian system is fully explained. The footprint concept developed within an international initiative is introduced. The mathematical

Mechanical Design

Lid-Driven Cavity Flow with Elliptic Obstacle at Different Orientations

The aim of the present work is to predict the flow field around an elliptic obstacle at different orientations inside a square Lid-Driven Cavity (LDC). The Lattice Boltzmann Method (LBM) is used to simulate the flow at a Reynolds number, Re, of 100, using the two-dimensional nine-velocity, (D2Q9) lattice configuration and the BGK collision operator. The in-house code is validated using data from

Mechanical Design

In-silico development and assessment of a Kalman filter motor decoder for prosthetic hand control

Up to 50% of amputees abandon their prostheses, partly due to rapid degradation of the control systems, which require frequent recalibration. The goal of this study was to develop a Kalman filter-based approach to decoding motoneuron activity to identify movement kinematics and thereby provide stable, long-term, accurate, real-time decoding. The Kalman filter-based decoder was examined via
Healthcare
Circuit Theory and Applications
Software and Communications
Mechanical Design
Innovation, Entrepreneurship and Competitiveness

Stochastic modeling of 2D photonic crystals

Due to the fabrication processes, inaccurate manufacturing of the photonic crystals (PCs) might occur which affect their performance. In this paper, we examine the effects of tolerance variations of the radii of the rods and the permittivity of the material of the two-dimensional PCs on their performance. The presented stochastic analysis relies on plane wave expansion method and Mote Carlo
Energy and Water
Circuit Theory and Applications
Innovation, Entrepreneurship and Competitiveness