about.jpg

Classifying Upper Limb Activities Using Deep Neural Networks

This paper presents a classification method using Inertial Measurement Unit (IMU) in order to classify six human upper limb activities. The study was also carried out to investigate whether theses activities are being performed normally or abnormally using two different neural networks: Artificial neural network (ANN) and convolutional neural network (CNN). Human activities that were included in the study: arm flexion and extension, arm pronation and supination, shoulder internal and external rotations. Before activities categorization, training data was obtained by the means of an IMU sensor

Artificial Intelligence
Healthcare
Mechanical Design

Gum Arabic polymer-stabilized and Gamma rays-assisted synthesis of bimetallic silver-gold nanoparticles: Powerful antimicrobial and antibiofilm activities against pathogenic microbes isolated from diabetic foot patients

In this research, irradiation by gamma rays was employed as an eco-friendly route for the construction of bimetallic silver-gold nanoparticles (Ag-Au NPs), while Gum Arabic polymer was used as a capping agent. Ag-Au NPs were characterized through UV–Vis., XRD, EDX, HR-TEM, FTIR, SEM/mapping and EDX analysis. Antibiofilm and antimicrobial activities were examined against some bacteria and Candida sp. isolates from diabetic foot patients. Our results revealed that the synthesis of Ag-Au NPs depended on the concentrations of tetra-chloroauric acid and silver nitrate. HR-TEM analysis confirmed the

Healthcare

Targeted photodynamic-induced singlet oxygen production by peptide-conjugated biodegradable nanoparticles for treatment of skin melanoma

Background: Photodynamic therapy (PDT) has been determined to be a promising treatment modality in the most resistant tumors such as malignant melanoma. However, the key cytotoxic agent of PDT, -singlet oxygen (1O2) - represents a high risk of photodynamic-associated side effects e.g. skin photosensitization. Recently, controllable photosensitization, where 1O2 is produced on demand, has received increasing attention. In our study, this could be achieved via loading the photosensitizer (PS) in nanoparticles (NPs) decorated with target-specific moieties characterized by 1O2 quenching abilities

Healthcare

Chitosan/carbon nanotube composite beads: Preparation, characterization, and cost evaluation for mercury removal from wastewater of some industrial cities in Egypt

Composite beads composed of chitosan (CS) with different carbon nanotubes (CNTs) were prepared by the incorporation of single-walled carbon nanotubes (SWCNTs), multiwalled carbon nanotubes (MWCNTs), and carboxylic multiwalled carbon nanotubes (MWCNT-COOHs). A protected crosslinking method was used for the preparation of the CS/CNTs beads by the reaction of the beads with Hg(II) as the protector. Scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis were used to characterize the prepared beads. The adsorption performance of the prepared beads was

Healthcare
Energy and Water

Carbon-dot-loaded CoxNi1−xFe2O4; x = 0.9/SiO2/TiO2 nanocomposite with enhanced photocatalytic and antimicrobial potential: An engineered nanocomposite for wastewater treatment

Water scarcity is now a serious global issue resulting from population growth, water decrease, and pollution. Traditional wastewater treatment plants are insufficient and cannot meet the basic standards of water quality at reasonable cost or processing time. In this paper we report the preparation, characterization and multiple applications of an efficient photocatalytic nanocomposite (CoxNi1−xFe2O4; x = 0.9/SiO2/TiO2/C-dots) synthesized by a layer-by-layer method. Then, the photocatalytic capabilities of the synthesized nanocomposite were extensively-studied against aqueous solutions of

Healthcare
Energy and Water

Combined effect of wind speed and covering irrigation canals on water quality parameters

Wind has a considerable effect on many water quality parameters. Some of the parameters are directly affected by the wind, while others are influenced by other physical water parameters like the velocity, temperature. etc.That are affected by wind and hence transfer their effect to water quality parameters. As the wind has an effect on water quality parameters, also covering waterways has a great effect on the water quality of those covered waterways. This is because covering a waterway alters the concentrations of its water quality parameters. This research is concerned with studying the

Healthcare
Energy and Water

Combined effect of wind speed and covering irrigation canals on water quality parameters

Wind has a considerable effect on many water quality parameters. Some of the parameters are directly affected by the wind, while others are influenced by other physical water parameters like the velocity, temperature. etc. that are affected by wind and hence transfer their effect to water quality parameters. As the wind has an effect on water quality parameters, also covering waterways has a great effect on the water quality of those covered waterways. This is because covering a waterway alters the concentrations of its water quality parameters. This research is concerned with studying the

Healthcare
Energy and Water

Left ventricular diastolic function in type 2 diabetes mellitus is associated with myocardial triglyceride content but not with impaired myocardial perfusion reserve

Purpose: To study myocardial perfusion reserve and myocellular metabolic alterations indicated by triglyceride content as possible causes of diastolic dysfunction in patients with type 2 diabetes mellitus, preserved systolic function, and without clinically evident coronary artery disease. Materials and Methods: Patients with type 2 diabetes mellitus (n = 42) underwent cardiac magnetic resonance (CMR) for quantification of 1) myocardial contractility by strain-encoded MR (SENC); 2) myocardial triglyceride content by proton magnetic resonance spectroscopy ( 1H-MRS); and 3) myocardial perfusion

Healthcare
Energy and Water

Coagulation/flocculation process for textile mill effluent treatment: experimental and numerical perspectives

This study investigates the feasibility of applying coagulation/flocculation process for real textile wastewater treatment. Batch experiments were performed to detect the optimum performance of four different coagulants; Ferric Sulphate (Fe2(SO4)3), Aluminium Chloride (AlCl3), Aluminium Sulphate (Al2(SO4)3) and Ferric Chloride (FeCl3) at diverse ranges of pH (1–11) on the removal of chemical oxygen demand (COD), total suspended solids (TSS), colour, total nitrogen (TN) and turbidity from real textile wastewater. At pH 9, FeCl3 demonstrated the most effective removal for all studied

Artificial Intelligence
Healthcare
Energy and Water
Software and Communications

A current-mode system to self-measure temperature on implantable optoelectronics

Background: One of the major concerns in implantable optoelectronics is the heat generated by emitters such as light emitting diodes (LEDs). Such devices typically produce more heat than light, whereas medical regulations state that the surface temperature change of medical implants must stay below + 2 °C. The LED's reverse current can be employed as a temperature-sensitive parameter to measure the temperature change at the implant's surface, and thus, monitor temperature rises. The main challenge in this approach is to bias the LED with a robust voltage since the reverse current is strongly

Healthcare
Circuit Theory and Applications