about.jpg

Automatic Early Diagnosis of Alzheimer's Disease Using 3D Deep Ensemble Approach

Alzheimer's disease (AD) is considered the 6 th leading cause of death worldwide. Early diagnosis of AD is not an easy task, and no preventive cures have been discovered yet. Having an accurate computer-aided system for the early detection of AD is important to help patients with AD. This study proposes a new approach for classifying disease stages. First, we worked on the MRI images and split them into an appropriate format to avoid data leakage. Subsequently, a simple and fast registration-free preprocessing pipeline was applied to the dataset. Numerous experiments were conducted to analyze

Artificial Intelligence
Healthcare
Circuit Theory and Applications
Software and Communications

Does Deep Learning Require Image Registration for Early Prediction of Alzheimer’s Disease? A Comparative Study Using ADNI Database

Image registration is the process of using a reference image to map the input images to match the corresponding images based on certain features. It has the ability to assist the physicians in the diagnosis and following up on the patient’s condition. One of the main challenges of the registration is that it takes a huge time to be computationally efficient, accurate, and robust as it can be framed as an optimization problem. In this paper, we introduce a comparative study to investigate the influence of the registration step exclusion from the preprocessing pipeline and study the counter

Artificial Intelligence
Healthcare
Circuit Theory and Applications
Software and Communications

Efficient Pipeline for Rapid Detection of Catheters and Tubes in Chest Radiographs

Catheters are life support devices. Human expertise is often required for the analysis of X-rays in order to achieve the best positioning without misplacement complications. Many hospitals in underprivileged regions around the world lack the sufficient radiology expertise to frequently process X-rays for patients with catheters and tubes. This deficiency may lead to infections, thrombosis, and bleeding due to misplacement of catheters. In the last 2 decades, deep learning has provided solutions to various problems including medical imaging challenges. So instead of depending solely on

Artificial Intelligence
Healthcare
Circuit Theory and Applications
Software and Communications

Smart Prediction of Circulatory Failure: Machine Learning for Early Detection of Patient Deterioration

Circulatory failure, also known as shock, is a critical condition that can have serious consequences for one's health. Early detection and timely intervention are crucial for improving patient outcomes. Machine learning (ML) models have shown promise in predicting circulatory failure based on clinical data. In our study, we examined different machine learning (ML) models to predict circulatory failure in patients who were admitted to the intensive care unit (ICU) with suspected circulatory problems. The ML model we developed used various algorithms like random forest, LG, XGB, Decision Tree

Artificial Intelligence
Healthcare
Circuit Theory and Applications

Oral Dental Diagnosis Using Deep Learning Techniques: A Review

The purpose of this study is to investigate the gradual incorporation of deep learning in the dental healthcare system, offering an easy and efficient diagnosis. For that, an electronic search was conducted in the Institute of Electrical and Electronics Engineers (IEEE) Xplore, ScienceDirect, Journal of Dentistry, Health Informatics Journal, and other credible resources. The studies varied with their tools and techniques used for the diagnosis while coping with the rapid deep-learning evolving base, with different types of conducting tools and analysis for the data. An inclusion criterion was

Artificial Intelligence
Healthcare
Circuit Theory and Applications
Software and Communications

Generalisability of fetal ultrasound deep learning models to low-resource imaging settings in five African countries

Most artificial intelligence (AI) research and innovations have concentrated in high-income countries, where imaging data, IT infrastructures and clinical expertise are plentiful. However, slower progress has been made in limited-resource environments where medical imaging is needed. For example, in Sub-Saharan Africa, the rate of perinatal mortality is very high due to limited access to antenatal screening. In these countries, AI models could be implemented to help clinicians acquire fetal ultrasound planes for the diagnosis of fetal abnormalities. So far, deep learning models have been

Artificial Intelligence
Healthcare
Circuit Theory and Applications
Software and Communications
Innovation, Entrepreneurship and Competitiveness

ArFakeDetect: A Deep Learning Approach for Detecting Fabricated Arabic Tweets on COVID-19 Vaccines

Social media platforms have emerged as major sources of false information, particularly regarding health topics. like COVID-19 vaccines. This rampant dissemination of inaccurate content contributes significantly to vaccine hesitancy and undermines vaccination campaigns. This research addresses the pressing need for automated methods to distinguish between factual and fabricated Arabic tweets concerning vaccines, aiming to mitigate the spread of misinformation on these platforms. The proposed approach utilizes deep learning techniques, leveraging pre-trained Arabic language models (Arabert)

Artificial Intelligence
Healthcare
Energy and Water
Circuit Theory and Applications
Software and Communications

Iterative Refinement Algorithm for Liver Segmentation Ground-Truth Generation Using Fine-Tuning Weak Labels for CT and Structural MRI

Medical image segmentation is indicated in a number of treatments and procedures, such as detecting pathological changes and organ resection. However, it is a time-consuming process when done manually. Automatic segmentation algorithms like deep learning methods overcome this hurdle, but they are data-hungry and require expert ground-truth annotations, which is a limitation, particularly in medical datasets. On the other hand, unannotated medical datasets are easier to come by and can be used in several methods to learn ground-truth masks. In this paper, we aim to utilize across-modalities

Artificial Intelligence
Healthcare
Circuit Theory and Applications
Software and Communications

Cross-Modality Deep Transfer Learning: Application to Liver Segmentation in CT and MRI

Liver diseases cause up to two million deaths yearly. Their diagnosis and treatment plans require an accurate assessment of the liver structure and tissue characteristics. Imaging modalities such as computed tomography (CT) and Magnetic resonance (MR) can be used to assess the liver. CT has better spatial resolution compared to MR, which has better tissue contrast. Each modality has its own applications. However, CT is widely used due its ease of access, lower cost and a shorter examination time. Liver segmentation is an important step that helps to accurately identify and isolate the liver

Artificial Intelligence
Healthcare
Circuit Theory and Applications
Software and Communications

OMICS and bioinformatics in Parkinson disease and related movements disorders

This chapter explores the integration of omics and bioinformatics for Parkinson's disease (PD) diagnosis and potential cure discovery. It begins with an overview of PD and its prevalence, followed by an examination of key mutations in genes linked to the disease. These mutations lead to dysfunctional proteins, triggering PD progression. The chapter delves into techniques like whole-exome sequencing (WES), genome-wide association sequencing (GWAS), and whole-genome sequencing (WGS). These methods enable the exploration of omics levels such as lipidomics, metabolomics, genomics, and proteomics

Healthcare
Circuit Theory and Applications