radwan.png

Prof. Ahmed Radwan

Vice President for Research

Faculty Office Ext.

1758

Faculty Building

UB2

Office Number

S21

Biography

Ahmed G. Radwan is the vice president for research at Nile University, Egypt and a professor in Mathematics and Physics department in Cairo University, Egypt. Also, he is an IEEE senior member and a member of the Applied Science Research Council, Specialized Scientific Councils (SSC), ASRT, Egypt. R Radwan was the former director of Nanoelectronics Integrated Systems Center (NISC) in Nile University, Egypt and Technical Center for Career Development (TCCD) in Cairo University, Egypt. During 2008 and 2009, He was a visiting Professor in Computational Electromagnetic Lab (CEL), in the Electrical and Computer Engineering Department (ECE) in McMaster University, Canada. Then in 2009, he was selected to take part in the first foundation research teams to join King Abdullah University of Science and Technology (KAUST).

Dr. Radwan has 475+ papers, h-index 55, and more than 10,760+ citations based on the Scopus database. He is the Co-inventor of Six US patents, author/Co-author of Seven international books as well as 15-chapter books in the highly ranked publishers such as Elsevier and Springer. He received many research grants as Principle Investigator (PI), CO-PI, or Consultant from different national/international organizations. He was Invited to be Lead/Guest Editors in Journal of Circuits, Systems and Signal Processing, and Journal of Mathematical Problems in Engineering, and Complexity. He organized many special sessions, and participated as Technical Program Committee (TPC) in various international conferences. He was selected as a member of the first scientific council of Egyptian Young Academy of Sciences (EYAS) as well as in the first scientific council of the Egyptian Center for the Advancement of Science, Technology, and Innovation (ECASTI) to empower and encourage Egyptian young scientists in science and technology and build knowledge-based societies.

His research interests include interdisciplinary concepts between mathematics and engineering applications such as fractional-order systems, bifurcation, chaos, memristor, and encryption. Dr. Radwan was awarded various awards as follows: The Cairo University excellence award for research in the engineering sciences in 2016. The best researcher awards Nile University 2015 and 2016. The Abdul Hameed Shoman Award for Arab Researchers in basic sciences in 2015. The state achievements award for research in mathematical sciences in 2012. The Cairo University achievements award for research in the engineering sciences in 2013.

Recent Publications

Resistorless memristor based oscillator

This paper introduces the replacement of four and six resistors with four and six memristors at the same time for the modified single input Op-Amps oscillator. The full independency between the oscillation condition and the oscillation frequency facilitates the study. Mathematical analysis is provided for the double replacement of resistors with memristors. The whole range of operation of the

Circuit Theory and Applications

Memristor-MOS hybrid circuit redundant multiplier

This paper introduces a step forward towards memristor-MOS hybrid circuit to achieve any combinational function. The proposed design is based on reducing the area by replacing the complete pull-down network with just one memristor and one comparator. The concept is then verified using an example of a simple function. Also, a proposed architecture for memristor based redundant multiplier circuit is

Circuit Theory and Applications

On the mathematical modeling of memcapacitor bridge synapses

Mem-element based synaptic bridge is very promising topic due to its learning capability where the synaptic bridge can be build using either memristors or memcapacitors. In this paper, the detailed mathematical analysis of memcapacitor bridge circuit is introduced. This mathematical analysis is build when a current input signal is applied to excite the bridge. Closed form expressions for the

Circuit Theory and Applications

Improved memristor-based relaxation oscillator

This paper presents an improved memristor-based relaxation oscillator which offers higher frequency and wider tunning range than the existing reactance-less oscillators. It also has the capability of operating on two positive supplies or alternatively a positive and negative supply. Furthermore, it has the advantage that it can be fully integrated on-chip providing an area-efficient solution. On

Energy and Water
Circuit Theory and Applications
Software and Communications
Innovation, Entrepreneurship and Competitiveness

Optimization of fractional-order RLC filters

This paper introduces some generalized fundamentals for fractional-order RL β C α circuits as well as a gradient-based optimization technique in the frequency domain. One of the main advantages of the fractional-order design is that it increases the flexibility and degrees of freedom by means of the fractional parameters, which provide new fundamentals and can be used for better interpretation or

Circuit Theory and Applications
Software and Communications
Mechanical Design

Fibonacci-based hardware post-processing for non-autonomous signum hyperchaotic system

This paper presents a hardware implementation of a robust non-autonomous hyperchaotic-based PRNG driven by a 256-bit LFSR. The original chaotic output is post-processed using a novel technique based on the Fibonacci series, bitwise XOR, rotation, and feedback. The proposed post-processing technique preserves the throughput of the system and enhances the randomness in the output which is verified

Circuit Theory and Applications
Software and Communications

Parametric control on fractional-order response for Lü chaotic system

This paper discusses the influence of the fractional order parameter on conventional chaotic systems. These fractional-order parameters increase the system degree of freedom allowing it to enter new domains and thus it can be used as a control for such dynamical systems. This paper investigates the behaviour of the equally-fractional-order Lü chaotic system when changing the fractional-order

Circuit Theory and Applications

On some generalized discrete logistic maps

Recently, conventional logistic maps have been used in different vital applications like modeling and security. However, unfortunately the conventional logistic maps can tolerate only one changeable parameter. In this paper, three different generalized logistic maps are introduced with arbitrary powers which can be reduced to the conventional logistic map. The added parameter (arbitrary power)

Circuit Theory and Applications

Amplitude modulation and synchronization of fractional-order memristor-based Chua's circuit

This paper presents a general synchronization technique and an amplitude modulation of chaotic generators. Conventional synchronization and antisynchronization are considered a very narrow subset from the proposed technique where the scale between the output response and the input response can be controlled via control functions and this scale may be either constant (positive, negative) or time

Circuit Theory and Applications
Research Tracks

1) Fractional-Order Systems

2) Memristor

3) Bifurcation

4) Encryption

5) Chaos

Projects
3
Research Project

Wireless Monitoring of Fruit Growth Using an Electrical BioImpedance Sensor Device

The idea of this project is to graph the quality of fruits and vegetables similar to ECG in humans. The purpose of this project is to build a prototype for a portable wireless electronic device capable of measuring live tissue with fruits or vegetables using bioimpedance and some mathematical & electrical models then transmitting data to the base station. This project will add scientific and
Chaotic
Research Project

Software Algorithm and Hardware Implementations of Information Security Using Number Theory and Chaotic Systems

The project aims at proposing novel software algorithms for information security and their hardware implementations. The algorithms will utilize different methods based on number theory and chaos theory. Cryptography and information hiding systems will be developed for different media data types such as text, image, audio and video. The project will investigate different classes of symmetric
5
Research Project

Ternary Logic Gates Design

Nowadays, the demand for building CNTFET-based ternary systems has been increasing. The current two-level binary logic and MOSFET technology have been facing limitations in chip size, design complexity, and power consumption. In this proposal, the method to design Ternary logic gates based on CNTFET and Memristor is proposed. Implementing Ternary Full-Adders and Multipliers is also discussed in
3
Research Project

Two Port Fractional-order Oscillators and Filters Suitable for Tissue Modeling

Objective: This project aims to study the relation between the mathematical fundamentals of fractional calculus and the concept of two-port circuit networks in the design of oscillators and filters with their analyses. These concepts will be applied to the Cole-Cole model, suitable for agriculture and biomedical applications tissue modelling. Outcomes: Literature Surveys (2 Journals + 2 Chapters)
00
Research Project

Fractional order Image Processing Platform for Retinal Pigmontosa Patients

Objective/Contributions: Investigation and categorization of the different methodologies in fractional operator discretization. Investigate the effect of the number of memory samples on the performance of different discretization schemes and recommend the scheme which gives the best performance for the least number of memory samples. Discuss the stability analysis of the discretized operators and
Research Project

Multi-stage Low-cost Treatment of Dyes and Paints Wastewater by Coagulation, Adsorption, and Filtration for Reuse in Several Application

Objective/Contributions: Designing and constructing a low-cost, efficient, rapid environmentally friendly treatment system for textile and paint industries' recycling and treatment. Conducting a comprehensive literature database of all the reuse and treatment methods, in paints wastewater treatment and all the pilot plants, and treatment plants used success stories that successfully reduce the
77
Research Project

Bio-Mimetic Locomotion of Soft Turtle Robot

Abstract Amphibious robots have great potential for a variety of applications, but their design can be complex and expensive. Bio-inspired soft robotics offers a promising solution, as their actuators can perform evenly on land and underwater. Our robot takes inspiration from turtle locomotion as it bridges the gap between traditional four-legged robots and swimming robots. The robot can be
77
Research Project

Bio-inspired Soft Robot for Monitoring Coral Reefs

Abstract Coral reefs play a crucial role in supporting a quarter of all aquatic life, but their existence is now threatened by ongoing climate changes. Our project aims to develop an underwater soft robot that can mimic the morphology and shape of actual marine creatures and to imitate their swimming motion. This robot can play a critical role as monitoring platform to understand the reefs