about.jpg

Filter by

Engineered nanomaterials as fighters against SARS-CoV-2: The way to control and treat pandemics

In this editorial trend, we aim to collect and present recently available data about the characteristics of SARS-CoV-2 virus, severity, infection, replication, diagnosis, and current medications. In addition, we propose the role of nanomaterials in controlling and treating COVID-19 through their antiviral and antibacterial potential with suggested action mechanisms indicating the capability of

Energy and Water

Protective Role of Copper Oxide-Streptomycin Nano-drug Against Potato Brown Rot Disease Caused by Ralstonia solanacearum

Potato plants can be infected by different bacterial diseases, among them, the potato brown rot disease, caused by Ralstonia solanacearum. The novelty of the present research is to assess the potential impact of the synthesized copper oxide NPs (CuO NPs)-streptomycin nano-drug synthesized by gamma irradiation for inducing the systemic resistance against potato brown rot disease. CuO NPs

Energy and Water

MoS2-based nanocomposites: synthesis, structure, and applications in water remediation and energy storage: a review

The world is currently facing critical water and energy issues due to the growing population and industrialization, calling for methods to obtain potable water, e.g., by photocatalysis, and to convert solar energy into fuels such as chemical or electrical energy, then storing this energy. Energy storage has been recently improved by using electrochemical capacitors and ion batteries. Research is

Energy and Water

Highlighting a Common Confusion in the Computation of Capacitance of Electrochemical Energy Storage Devices

[No abstract available]

Energy and Water
Circuit Theory and Applications

Simulation of Water Wave Interaction with Large Submerged Square Obstacles

Water waves propagation over submerged obstacles is considered. The problem serves as an efficient model for modeling breakwaters. A numerical wave tank is developed to simulate the induced flow field. The model is based on multiphase viscous flow assumptions. Computations are performed adopting clustered grids and suitable initial and boundary conditions. The results are verified using the flow
Energy and Water
Mechanical Design

A stochastic flight problem simulation to minimize cost of refuelling

Commercial airline companies are continuously seeking to implement strategies for minimizing costs of fuel for their flight routes as acquiring jet fuel represents a significant part of operating and managing expenses for airline activities. A nonlinear mixed binary mathematical programming model for the airline fuel task is presented to minimize the total cost of refueling in an entire flight

Energy and Water

Optimum distribution of protective materials for COVID−19 with a discrete binary gaining-sharing knowledge-based optimization algorithm

Many application problems are formulated as nonlinear binary programming models which are hard to be solved using exact algorithms especially in large dimensions. One of these practical applications is to optimally distribute protective materials for the newly emerged COVID-19. It is defined for a decision-maker who wants to choose a subset of candidate hospitals comprising the maximization of the

Artificial Intelligence
Healthcare
Software and Communications

Optimum Location of Field Hospitals for COVID-19: A Nonlinear Binary Metaheuristic Algorithm

Determining the optimum location of facilities is critical in many fields, particularly in healthcare. This study proposes the application of a suitable location model for field hospitals during the novel coronavirus 2019 (COVID-19) pandemic. The used model is the most appropriate among the threemost common locationmodels utilized to solve healthcare problems (the set covering model, the maximal

Artificial Intelligence
Healthcare
Software and Communications

Air change rate effects on the airborne diseases spreading in Underground Metro wagons

The effect of the rate of change of fresh air inside passengers’ wagons for Underground Metro on the spreading of airborne diseases like COVID-19 is investigated numerically. The study investigates two extreme scenarios for the location of the source of infection within the wagon with four different air change rates for each. The first scenario considers the source of infection at the closest
Healthcare
Mechanical Design

A queueing theory approach to traffic offloading in heterogeneous cellular networks

Future and current cellular networks encounter an unprecedented growth of mobile devices traffic, imposing various critical challenges that should be thoroughly addressed. Catering for such enormous amount of traffic demand via cellular networks significantly increases the network congestion and degrades the achievable quality of service (QoS). Thus, traffic offloading has been suggested to tackle

Software and Communications