about.jpg

Filter by

Design of fopid controller for a dc motor using approximation techniques

This paper introduces a study of fractional-order PID (FOPID) controller applied to a DC motor. The idea is to control the motor speed using the FOPID and compare it with the conventional PID controller. Two approximation techniques are employed to realize the FOPID, which are Matsuda and Oustaloup, each with order four. Different responses are depicted for various fractional orders. A specific

Circuit Theory and Applications
Mechanical Design

A Digital Hardware Implementation for A new Mixed-Order Nonlinear 3-D Chaotic System

This paper introduces a generic modeling for a 3-D nonlinear chaotic based on fractional-order mathematical rules. Also, a novel modeling for the system using a mixture between integer and fractional-order calculus is proposed. Dynamics of the new realization are illustrated using phase portrait diagrams with complex behavior. Also, a great change in the parameter ranges is investigated using

Circuit Theory and Applications
Software and Communications
Mechanical Design

Study of optical power variations in multi-layer human skin model for monitoring the light dose

Monitoring light dose is essential in much clinical procedures like bio-stimulation, neuro-medicine and photodynamic therapy and in many biophotonics applications such as optogenetics and biosensing. However, monitoring the optical power dissipation as light travels in different layers of tissue is essential in determining the required optical dose. Each part in the human body is protected by

Software and Communications
Innovation, Entrepreneurship and Competitiveness

Design of fractional-order differentiator-lowpass filters for extracting the R peaks in ECG signals

An implementation of a fractional-order differentiator-lowpass filter is presented in this work, which is constructed from Operational Transconductance Amplifiers as active cells. This offers the benefits of electronic tuning and, also, of monolithic implementation. The presented scheme has been employed for the extraction of the R peaks in electrocardiogram signals due to its efficiency for

Healthcare
Circuit Theory and Applications

A current-mode system to self-measure temperature on implantable optoelectronics

Background: One of the major concerns in implantable optoelectronics is the heat generated by emitters such as light emitting diodes (LEDs). Such devices typically produce more heat than light, whereas medical regulations state that the surface temperature change of medical implants must stay below + 2 °C. The LED's reverse current can be employed as a temperature-sensitive parameter to measure

Healthcare
Circuit Theory and Applications

The H3ABioNet helpdesk: An online bioinformatics resource, enhancing Africa's capacity for genomics research

Background: Currently, formal mechanisms for bioinformatics support are limited. The H3Africa Bioinformatics Network has implemented a public and freely available Helpdesk (HD), which provides generic bioinformatics support to researchers through an online ticketing platform. The following article reports on the H3ABioNet HD (H3A-HD)'s development, outlining its design, management, usage and

Artificial Intelligence

Permutation-Only FPGA Realization of Real-Time Speech Encryption

This paper introduces an FPGA design methodology of a sample and bit permutation speech encryption system. Pipelining method is used to build the proposed system, which can have different number of permutation levels. The security of the system is evaluated using entropy, Mean Squared Error (MSE) and correlation coefficients comparing the different permutation levels. The results demonstrate the

Circuit Theory and Applications

Self-balancing Robot Modeling and Control Using Two Degree of Freedom PID Controller

This paper represents the control of a two-wheel self-balancing robot based on the theory of controlling the inverted pendulum. This paper dividing the system modeling into two main parts. The first part is the dc motor and the second part are the whole mechanical design and its characteristics as a function in the motor speed and the torque depending on the system, creating two control closed

Mechanical Design

Using Meta-heuristic Optimization to Extract Bio-impedance Parameters from an Oscillator Circuit

This paper introduces a method for extracting the Cole-impedance model parameters using a meta-heuristic optimization technique. The method is based on a single proposed resistor controlled oscillator (SRCO) where the unknown bio-impedance is embedded. At two different oscillation frequencies, the start-up oscillation condition is recorded. Then the corresponding nonlinear equations are solved

Circuit Theory and Applications

Reliable Collaborative Semi-infrastructure Vehicle-to-Vehicle Communication for Local File Sharing

Recently, Vehicular Cloud Communication (VCC) has been gaining momentum targeting intelligent and efficient data transmission. VCC is a type of mobile ad-hoc network comprising heterogeneous vehicles sharing their resources to perform collaborative activities. In this paper, we propose a new semi-infrastructure file-browsing in order to provide Network as a service (NaaS) enabling internet

Software and Communications