Human motion has strong impact on the received signal strength (RSS) of indoor wireless links that can be exploited for variance-based device-free positioning. In this paper, we investigate the effect of human motion on the variance of the RSS of wireless local area networks (WLAN) operating at 2.4 GHz. Using measurements, the RSS variance for human in-place motion is determined as a function of the human position in a corridor setting. We provide ray tracing and empirical models to capture this effect. The accuracy of the different models is compared under different scenarios. Furthermore, we
In this paper, we study the impact of the knowledge of primary side information on the efficiency of spectrum sensing for cognitive radio networks. In particular, assuming that the secondary transmitter knows the modulation and/or coding scheme used in the primary transmissions, we evaluate the efficiency of spectrum sensing in terms of maximizing the overall achievable throughput of the system. We present the results for both block-based and sequential detection techniques. We show that in sequential detection, and when the cognitive transmitter has knowledge of the primary codebook, the
In this paper, we provide a review of the benefits of employing multiple-input multiple-output (MIMO) processing techniques in vehicular ad hoc networks VANETs. These benefits include increasing the range of communication via beamforming, improving the reliability of communication via spatial diversity, increasing the throughput of the network via spatial multiplexing, and managing multiuser interference due to the presence of multiple transmitting terminals. We also present a number of key research challenges facing MIMO VANETs. The first one is deriving statistical MIMO-V2V channel models
In this paper, we analyze the performance of cooperative content caching in vehicular ad hoc networks (VANETs). In particular, we characterize, using analysis and simulations, the behavior of the probability of outage (i.e. not finding a requested data chunk at a neighbor) under freeway vehicular mobility. First, we introduce a formal definition for the probability of outage in the context of cooperative content caching. Second, we characterize, analytically, the outage probability under vehicular and random mobility scenarios. Next, we verify the analytical results using simulations and
In this paper, we provide a review of the benefits of employing multiple-input multiple-output (MIMO) signal processing techniques in vehicular ad hoc networks (VANETs). These benefits include increasing the range of communication via beamforming, improving the reliability of communication via spatial diversity, increasing the throughput of the network via spatial multiplexing, and managing multiuser interference due to the presence of multiple transmitting terminals. We also present a number of key research challenges facing MIMO VANETs. The first one is deriving statistical MIMO vehicular
We characterize the achievable three-dimensional tradeoff between diversity, multiplexing, and delay of the single antenna Automatic Retransmission reQuest (ARQ) Z-interference channel. Non-cooperative and cooperative ARQ protocols are adopted under these assumptions. Considering no cooperation exists, we study the achievable tradeoff of the fixed-power split Han-Kobayashi (HK) approach. Interestingly, we demonstrate that if the second user transmits the common part only of its message in the event of its successful decoding and a decoding failure at the first user, communication is improved
We study a cellular setting in which an introduced multiple-antenna relay station (RS) can possibly assist the bidirectional communication between a multiple-antenna base station (BS) and a set of single-antenna mobile stations (MSs). Through a proposed six-phase communication protocol with arbitrary number of antennas and MSs, we characterize the maximum number of degrees of freedom (DoF) that can be attained when the BS-MSs direct link is active or down. When the direct link is available, we show that the introduction of a multiple-antenna RS cannot increase the maximum DoF regardless of the
In this paper, we propose a distributed reinforcement learning (RL) technique called distributed power control using Q-learning (DPC-Q) to manage the interference caused by the femtocells on macro-users in the downlink. The DPC-Q leverages Q-Learning to identify the sub-optimal pattern of power allocation, which strives to maximize femtocell capacity, while guaranteeing macrocell capacity level in an underlay cognitive setting. We propose two different approaches for the DPC-Q algorithm: namely, independent, and cooperative. In the former, femtocells learn independently from each other, while
The recent witnessed evolution of cellular networks from a carefully planned deployment to more irregular, heterogeneous deployments of Macro, Pico and Femto-BSs motivates new analysis and design approaches. In this paper, we analyze the coverage probability in cellular networks assuming repulsive point processes for the base station deployment. In particular, we characterize, analytically using stochastic geometry, the downlink probability of coverage under a Matern hardcore point process to ensure minimum distance between the randomly located base stations. Assuming a mobile user connects to
In this paper, we study the performance of the downlink of a cellular network with automatic repeat-request (ARQ) and a half duplex decode-and-forward shared relay. In this system, two multiple-input-multiple-output (MIMO) base stations serve two single antenna users. A MIMO shared relay retransmits the lost packets to the target users. First, we study the system with direct retransmission from the base station and derive a closed form expression for the outage probability of the system. We show that the direct retransmission can overcome the fading, however, it cannot overcome the