

Extended RC Impedance and Relaxation Models for Dissipative Electrochemical Capacitors
Electrochemical capacitors are a class of energy devices in which complex mechanisms of accumulation and dissipation of electric energy take place when connected to a charging or discharging power system. Reliably modeling their frequency-domain and time-domain behaviors is crucial for their proper design and integration in engineering applications, knowing that electrochemical capacitors in general exhibit anomalous tendency that cannot be adequately captured with the traditional RC-based models. In this study, we first review some of the widely used fractional-order models for the description of impedance and relaxation functions of dissipative resistive-capacitive system, namely, the Cole-Cole, Davidson-Cole, and Havriliak-Negami models. We then propose and derive new q-deformed models based on modified evolution equations for the charge or voltage when the device is discharged into a parallel resistive load. We verify our results on anomalous spectral impedance response and time-domain relaxation data for voltage and charge obtained from a commercial supercapacitor. © 1963-2012 IEEE.