yasser.png

Prof. Yasser M. El Battawy

Program Director of Engineering Core

Faculty Office Ext.

1753

Biography

Prof. Yasser El-Batawy is a highly accomplished academic with expertise in optoelectronics. He earned his B.Sc. in Electronics and Electrical Communications Engineering from Cairo University in 1996, followed by an M.Sc. in Engineering Physics from the same institution in 2000. In 2005, he completed his Ph.D. in Electrical and Computer Engineering at McMaster University in Canada, focusing on the "Modeling of High-Speed Photodetectors." He was a postdoctoral fellow in the ECE Department at McGill University, Canada, from 2005 to 2006. In 2006, he joined the Engineering Physics Department at the Faculty of Engineering, Cairo University, as an assistant professor and eventually achieved the rank of associate professor. In May 2022, he was promoted to full professor in Engineering Physics. His current research focuses on photodetectors, infrared sensing, photovoltaics, plasmonic photovoltaics, stochastic analysis of photonic devices, and photonic crystals.

Prof. Yasser's professional journey also includes a role in 2013 as a senior member in the technical office of the Egyptian Educational Development Fund (EDF). Since February 2018, he has been an associate professor in Engineering Physics at Nile University. At Nile University, he holds the position of Director of the Engineering Core Program, showcasing his leadership capabilities.

Prof. Yasser has extensive experience teaching a wide range of undergraduate and graduate courses. He has designed, taught, and supervised courses such as Engineering Physics, Electric Circuits, Electromagnetic Fields, Solid-State Electronics, Optoelectronics, and Photovoltaics at various universities, including Cairo University, Nile University, Egyptian E-Learning University (EELU), and the Arab Academy for Science, Technology & Maritime Transport. Notably, he has developed an online platform for Engineering Physics courses at Nile University, in addition to the traditional classroom format, and oversees all associated laboratory work.

 

Achievements
  1. Prof. Yasser received the Supervision of Best Master Thesis in Cairo University for from Cairo University.
  2. He received the Natural Sciences and Engineering Research Council of Canada (NSERC)-Postdoctoral Fellow (NSERC-PDF) for Postdoctoral Fellowship from Natural Sciences and Engineering Research Council of Canada.
  3. He received the Ontario Graduate Scholarship (OGS) from the Province of Ontario.
  4. He received the NU Outstanding Teaching Award from Nile University.
Recent Publications

Interfacial modification of perovskite solar cell using zno electron injection layer with pdms as antireflective coating

Recently, perovskite solar cells (PSCs) exhibits tremendous power conversion efficiency and has shown enhanced figures of merit being secured regarding cell stability. In this paper, perovskite solar cell with Zno electron injection layer is presented. The humidity degradation of the perovskite active layer and the efficiency of the cell is observed under several conditions. Using ZnO as a planner

Energy and Water
Circuit Theory and Applications

Enhanced plasmonic photovoltaic using embedded novel gear-shaped nanoparticles

In this paper, novel gear-shaped nanoparticles are introduced for the first time to enhance the photovoltaic (PV) efficiency. This has been achieved via increasing the overall power absorption by the PV semiconductor material in both visible and near-infrared ranges. The modes of the new gear-shaped nanoparticles are investigated. A parametric study has been performed which demonstrates how the

Software and Communications
Research Tracks
  • Optoelectronics
  • High-Speed Photodetectors
  • Quantum Dot InfraRed Photodetectors
  • Plasmonic Photovoltaics 
  • Stochastic Modeling of Photonic Devices
Projects
1
Research Project

Plasmonic Sensors for Biomedical and Infra-Red Detection Application

Objective/Contributions: The project aims at proposing a new Infra-Red sensor design by employing a plasmonic effect. Plasmonic devices have great potential for biomedical applications due to the sensitivity of the localized surface plasmon resonance to the surrounding medium. Therefore, proposed metasurface sensors are tuned for Biomedical applications as medical diagnostic tools. Enhancing
Research Project

Terahertz Metamaterial Structures for Biomedical Sensing Applications

A new design of interdigitated E-shaped metamaterial sensor has been proposed. The structure has been intensively studied using CST software and is optimized to achieve ultrahigh sensitivity at the Terahertz range. Two different structures of the E-shaped sensors have been proposed. Both structures are characterized by a high absorption level at their resonant peaks with an ultra-high sensitivity