dr.lobna Said

Dr. Lobna A. Said

Program Director of Microelectronics System Design (MSD)

Faculty Office Ext.

1757

Faculty Building

UB2

Office Number

S17

Biography

Lobna A. Said (Senior Member IEEE 2020) is a full-time Associate Professor at the Faculty of Engineering and Applied Science, Nile University (NU). She has been the director of the Microelectronics System Design Master Program (MSD) and the Co-director of the Nanoelectronics Integrated System Design Research center (NISC) since September 2021. She received her B.Sc., M.Sc., and PhD in electronics and electrical communications from Cairo University, Egypt, in 2007, 2011, and 2016, respectively. She has over 185 publications distributed between high-impact journals, conferences, and book chapters. She has an H-index of 29, as reported by the Scopus database. Her interdisciplinary research interests include modelling, control, optimization techniques, analog and digital integrated circuits, fractional-order circuits, and systems, Memristors, non-linear analysis, and chaos theory.

She was involved in many national/international research grants as a PI, Co-PI, or Senior Researcher/ Member.

She is the Vice-Chair of technical Chapters of the IEEE Egypt Section and the Vice-Chair of the IEEE Computational Intelligence Egypt Chapter 2018-present. She is the Counselor of the IEEE NU student branch 2018-present. She has been the Co-chair of WIE in the IEEE CAS Egypt Technical Chapter since 2021.

She won the state encouragement award for the year 2019 in engineering science. She received the Excellence Award from the Center for the Development of Higher Education and Research in 2019 for the best Phd thesis in 2016. She won the Dr Hazem Ezzat Prize for Outstanding Researcher NU 2019 and 2020. Her name was in the Top 2% of Scientists, according to the Stanford Report for 2019, 2020, and 2021. She has received the Recognized Reviewer Award from many international journals. She was awarded the IEEE Outstanding Branch Counselor & Branch Chapter Advisor Award in 2021. In 2022, she received the Junior Faculty Development Program (JFDP) from Fulbright. In 2023, She received the Africa Science Leadership Programme (ASLP) fellowship from The University of Pretoria and the Global Young Academy, with the support of the Robert Bosch Stiftung.

In 2019, she was selected as a member of the Egyptian Young Academy of Sciences (EYAS) to empower and encourage young Egyptian scientists in science and technology and build knowledge-based societies. In 2020, she was elected as the Co-Chair of EYAS. Furthermore, in 2020, she was selected to be an African Academy of Science (AAS) affiliate member. In 2020, she was also chosen to be a Member of the Arab-German Young Academy of Sciences and Humanities (AGYA). In 2021, she was selected to be a Member of the Council for Future Studies and Risk Management, ASRT, Egypt.

Additionally, she served on the technical and organizing committees of many international conferences, organized special sessions, and was selected as a TWAS Young Affiliate. In 2022, she was elected as a steering committee member of AGYA. In 2022, she joined the editorial board of Four journals belonging to these publishers: Elsevier, MDPI and Frontiers.

Achievements

1) Lobna Said received The Stat Encouragement Award 2019 in engineering science. for Research Award from the Ministry of Scientific Research - Academy of Scientific Research and Technology.

2) Lobna Said received the Dr. Hazem Ezzat Prize for the outstanding Researcher, NU for 2019/ 2020. for Research Award from Nile University.

3) Lobna Said received The 2nd Place Best paper award Prize in ICM Conference, Jordon 2020 for Research Award from ICM Conference.

4) Lobna Said received the Dr. Hazem Ezzat Prize for the outstanding Researcher, NU for 2018/ 2019. for Research Award from Nile University.

5) Lobna Said received the Best Thesis Supervisor for the M.Sc. student Esraa Hamed, Nile University, 2019. for Research Award from Nile University.

6) Lobna Said received the Excellence Award from the Center for the Development of Higher education and Research 2016 for Research Award from the Center for the Development of Higher education Research.

7) Lobna Said received the Best paper award (electronic section) at the MOST Conference, Thessaloniki, Greece, 2017. the paper titled “FPGA Realization of Caputo and Grünwald-Letnikov Operators for Research Award from MOCAST Conference.

8)Lobna Said being as  Arab Co-President of the Arab-German Young Academy of Sciences and Humanities 
(AGYA)  for this year Nov 23 to nov 24

9)She was elected as the Co-president of the Arab-German Young Academy of Sciences and Humanities (AGYA) in 2023

Recent Publications

A Digital Hardware Implementation for A new Mixed-Order Nonlinear 3-D Chaotic System

This paper introduces a generic modeling for a 3-D nonlinear chaotic based on fractional-order mathematical rules. Also, a novel modeling for the system using a mixture between integer and fractional-order calculus is proposed. Dynamics of the new realization are illustrated using phase portrait diagrams with complex behavior. Also, a great change in the parameter ranges is investigated using

Circuit Theory and Applications
Software and Communications
Mechanical Design

Design of fopid controller for a dc motor using approximation techniques

This paper introduces a study of fractional-order PID (FOPID) controller applied to a DC motor. The idea is to control the motor speed using the FOPID and compare it with the conventional PID controller. Two approximation techniques are employed to realize the FOPID, which are Matsuda and Oustaloup, each with order four. Different responses are depicted for various fractional orders. A specific

Circuit Theory and Applications
Mechanical Design

General fractional order mem-elements mutators

This paper proposes the realization of grounded and floating fractional order mem-elements (FOMEs) based on two- and three-port mutators, respectively. Three different topologies based on two-port mutators are implemented using the four members of the second-generation current conveyor (CCII) family which is useful to achieve several realizations for the same circuit. The Fractional Order Mem

Circuit Theory and Applications

Generalized two-port network based fractional order filters

This paper proposes a general prototype fractional order filter based on a two-port network concept with four external impedances. Three induced classifications from the general prototype are extracted with one, two and three external impedances, achieving ten possible generalized topologies. The external impedances are fractional-order elements and resistors. There are forty-six filters divided

Circuit Theory and Applications

Generic Hardware of Fractional Order Multi-Scrolls Chaotic Generator Based on FPGA

Exploring the implementation of fractional calculus is essential to be adequately used in several applications. This paper introduces an FPGA design methodology of fractional order multi-scrolls chaotic system. Hardware resources comparison proves the efficiency of the proposed method. The designs are simulated using Xilinx ISE 14.7 and realized on FPGA Xilinx Artix 7. Different interesting

Circuit Theory and Applications

Analysis and Design of Fractional-order Low-pass Filter with Three Elements of Independent Orders

This paper studies a new fractional-order form for the active low-pass filter. The form was mainly generated from generalizing an active second-order low-pass filter with three capacitors to the fractional-order domain with three independent orders. The transfer function introduced an extra term in the denominator comprising the third fractional order. The effect of the third fractional-order

Circuit Theory and Applications

Toward Portable Bio-impedance devices

Bio-impedance measurement has been used as an indicator for specific physical and chemical changes in food products, fruits and vegetables, cancer detection and other applications. In this paper, a portable wireless bio-impedance measurement embedded system, based on the AD5933 chip, is introduced. The system is calibrated using a parallel RC network and the industry standard electrochemical

Circuit Theory and Applications

Power tracking controller design for photo-voltaic systems based on particle swarm optimization technique

Solar energy turns into a promising supply of electricity, so structures of Photo-voltaic (PV) regularly use a maximum power point tracking (MPPT) way to deliver the highest probable power to the load continuously. This paper presents the methodology of PI controller tuning of PV employing Particle Swarm Optimization (PSO). The aim is to obtain the maximum power and maintain its value using the PI

Circuit Theory and Applications

Incremental Grounded Voltage Controlled Memristor Emulator

Memristor has become an interesting research subject in the recent years. Its special behavior has attracted the attention of the research community that motivated researchers to investigate it in details. As memristor is a relatively new electrical element, it is not yet available in the market as a solid state component Researchers found their way to build memristor emulators to achieve its

Circuit Theory and Applications
Mechanical Design
Innovation, Entrepreneurship and Competitiveness
Research Tracks
  • Analog integrated circuits.
  • Digital integrated circuits.
  • Fractional order circuits and systems.
  • Chaos Theory and Nonlinear systems.
  • Fractional-order biomedical applications.
  • Fractional calculus.
  • Renewable energy.
  • Wastewater treatment and agriculture
Projects
3
Research Project

Wireless Monitoring of Fruit Growth Using an Electrical BioImpedance Sensor Device

The idea of this project is to graph the quality of fruits and vegetables similar to ECG in humans. The purpose of this project is to build a prototype for a portable wireless electronic device capable of measuring live tissue with fruits or vegetables using bioimpedance and some mathematical & electrical models then transmitting data to the base station. This project will add scientific and
Chaotic
Research Project

Software Algorithm and Hardware Implementations of Information Security Using Number Theory and Chaotic Systems

The project aims at proposing novel software algorithms for information security and their hardware implementations. The algorithms will utilize different methods based on number theory and chaos theory. Cryptography and information hiding systems will be developed for different media data types such as text, image, audio and video. The project will investigate different classes of symmetric
1
Research Project

Smart Agriculture in Internet of Things Era

Efficient management of the Earth’s water resources has surged in urgency due to the confluence of several factors, including population growth, climate change, urbanization, etc. Irrigation stands out as one of the major sources of water utilization that can benefit drastically from novel approaches to water management. The nominal method for smart irrigation is to use some weather conditions to
3
Research Project

Fractional-order Complex Chaotic Systems: FPGA Implementation and Applications

Fractional calculus (FC) has been proved through numerous research examples to be a superior tool for system description to the narrow integer order domain. This is achieved through the extra parameters introduced by allowing the differential or integral orders to take non-integer values. The promising capabilities of fractional-order devices challenge the research to find a way to simulate its
3
Research Project

FPGA/FPAA Implementation of Fractional-order Systems

Fractional Calculus (FC) has been proved through numerous research examples to be a superior tool for system description to the narrow integer order domain. This is achieved through the extra parameters introduced by allowing the differential or integral orders to take non-integer values. The promising capabilities of fractional-order devices challenge the research to find a way to simulate its
5
Research Project

Ternary Logic Gates Design

Nowadays, the demand for building CNTFET-based ternary systems has been increasing. The current two-level binary logic and MOSFET technology have been facing limitations in chip size, design complexity, and power consumption. In this proposal, the method to design Ternary logic gates based on CNTFET and Memristor is proposed. Implementing Ternary Full-Adders and Multipliers is also discussed in
3
Research Project

Two Port Fractional-order Oscillators and Filters Suitable for Tissue Modeling

Objective: This project aims to study the relation between the mathematical fundamentals of fractional calculus and the concept of two-port circuit networks in the design of oscillators and filters with their analyses. These concepts will be applied to the Cole-Cole model, suitable for agriculture and biomedical applications tissue modelling. Outcomes: Literature Surveys (2 Journals + 2 Chapters)
Research Project

Efficient Implementation of Reconfigurable Machine Learning IP Cores on FPGA

This project's aim is to develop a working flow providing a better and an efficient way for implementing Machine Learning algorithms having a balance between high performance and low power consumption. Objective/Contributions: Software Implementation of Machine Learning Algorithms Hardware Implementation of Machine Learning Algorithms Efficient Power Consumption Reconfigurable Design of ML FPGA IP
Research Project

Multi-stage Low-cost Treatment of Dyes and Paints Wastewater by Coagulation, Adsorption, and Filtration for Reuse in Several Application

Objective/Contributions: Designing and constructing a low-cost, efficient, rapid environmentally friendly treatment system for textile and paint industries' recycling and treatment. Conducting a comprehensive literature database of all the reuse and treatment methods, in paints wastewater treatment and all the pilot plants, and treatment plants used success stories that successfully reduce the
Research Project

Multi-purposes Reading IoT-based Smart Platform

Objectives/Contributions: The project aims to introduce a solution for a multi-protocol environment. The proposed device that represents the ultimate goal of the project will act as an interpreter between different communication media, representing the project’s main deliverable. Furthermore, we propose to have a smart device to estimate the channel performance and decide the optimum communication
Research Project

Making Graduates in Egypt, Libya and Palestine Ready for the Job Market

Objectives/Contributions: Many Arab countries have to deal with discrepancies between the educational output and the actual needs of their labour markets. Introducing capacity-building trainings for new graduates is an optimal approach to bridge this gap, improve their skills and increase their marketability for industry or academia, which is the aim of the project by the AGYA Working Group Arab
Research Project

Improving Job Market Skills of Graduates

In Egypt and its neighbouring countries, a mismatch between educational output and training requirements of the labour market has been a significant constraint on economic development. Pre-employment skills are essential to prepare newly graduated students for the job market in the industry as well as academia. AGYA members Dr. Lobna Said, Dr. Mohamed Abou El-Enein, Dr. Shadi Albarqouni and Dr