about.jpg

Filter by

Low power clock generator using charge recycling

A major portion of the power consumed in today's systems is due to the clock distribution network. Solutions attempted to reduce clocking power result in low efficiency systems or systems with high complexity control schemes. In this work, a low power clock generator is introduced that can reduce switching power of the clock by almost 75%. This circuit uses the charge recycling concept to achieve

Circuit Theory and Applications

Ecosystems for the development of multi-core and many-core SoC models

Multi-core and many-core Systems-on-Chip (SoC) are growing more complex than ever. Consequently, developing system models for such SoCs to guide and validate architectural and implementation decisions is becoming a daunting task. It consumes a huge amount of time and effort just to get the model up and running. Although these system models can be fairly abstracted, they still require the setup of

Circuit Theory and Applications

An achievable rate region for a primary network shared by a secondary link

We consider a multiple access primary network with N transmitters. A secondary link of one transmitter and a corresponding receiver causes interference to the primary network. An achievable rate region for the primary network and the secondary link is obtained given the following mode of operation. The secondary transmitter employs rate-splitting so that the primary receiver can decode part of the

Circuit Theory and Applications
Software and Communications

Energy harvesting of gas pipeline vibration

Pipelines conveying gas under pressure exhibit turbulence-induced vibrations. The current work is concerned with extracting useful power from pipelines operating well within their stability region. At such regions, the pipe vibrations exist in small magnitudes and are unlikely to cause structural failure, yet can be exploited to provide useful energy for low-power electronic devices. Accordingly

Energy and Water

On the deterministic multicast capacity of bidirectional relay networks

In this paper, we completely characterize the deterministic multicast capacity region of the symmetric two-pair bidirectional half duplex relay network with private messages. Towards this end, we first develop a new upper bound on the deterministic capacity region, based on the notion of a one-sided genie. We then proceed to construct novel detour schemes that achieve the upper bound by routing

Software and Communications

Proactive resource allocation: Turning predictable behavior into spectral gain

This paper introduces the novel concept of proactive resource allocation in which the predictability of user behavior is exploited to balance the wireless traffic over time, and hence, significantly reduce the bandwidth required to achieve a given blocking/outage probability. We start with a simple model in which the smart wireless devices are assumed to predict the arrival of new requests and

Software and Communications

Propagation modeling for accurate indoor WLAN RSS-based localization

WLAN RSS-based localization has been a hot research topic for the last years. To obtain high accuracy in the noisy wireless channel, WLAN location determination systems usually use a calibration phase, where a radio map, capturing the signal strength signatures at different locations in the area of interest, is built. The radio map construction process takes a lot of time and effort, reducing the

Software and Communications

Time-based demand-constrained cross-layer resource allocation for wireless networks

Efficient resource allocation is a critical component in multi-user QoS communications and high speed networks. In this paper, we devise a new mathematical model for the resource allocation problem that takes into account the users' demands in a PHY-MAC cross-layer approach. Incorporating the time axis in our model, the target is to maximize the number of bits transmitted in a given frame rather

Software and Communications

Opportunistic interference alignment for multiuser cognitive radio

We present an interference alignment (IA) technique that allows multiple opportunistic transmitters (secondary users) to use the same frequency band of a pre-existing primary link without generating any interference. The primary and secondary transmit-receive pairs are equipped with multiple antennas. We exploit the fact that under power constraints on the primary transmitter, the rate of the

Software and Communications

Configurations of active acoustic metamaterial with programmable bulk modulus

Acoustic MetaMaterials (AMM) have been considered as effective means for controlling the propagation of acoustical wave energy through these materials. However, most of the currently exerted efforts are focused on studying passive metamaterials with fixed material properties. In this paper, the emphasis is placed on the development of a new class of one-dimensional acoustic metamaterials with