about.jpg

Filter by

A qualitative comparison between the proportional navigation and differential geometry guidance algorithms

This paper discusses and presents an overview of the proportional navigation (PN) guidance law as well as the differential geometry (DG) guidance algorithm that are used to develop the intercept course of a certain target. The intent of this study is to illustrate the advantages of the guidance algorithm generated based on the concepts of differential geometry against the well-known PN guidance

Passivity based decoupling of lagrangian systems

In this article a novel decoupling strategy for complex systems, in specific, Lagragian models which represents mechanical systems is proposed. In this study a passivity based approach is shown considering that the decoupling law improves some results found in literature in which only a state feedback decoupling law is implemented. The passivity based decoupling law is obtained by selecting an

New hybrid synchronisation schemes based on coexistence of various types of synchronisation between master-slave hyperchaotic systems

In this paper, we present new approaches to study the co-existence of some types of synchronisation between hyperchaotic dynamical systems. The paper first analyses, based on stability theory of linear continuous-Time systems, the co-existence of the projective synchronisation (PS), the function projective synchronisation (FPS), the full state hybrid function projective synchronisation (FSHFPS)

Circuit Theory and Applications
Software and Communications
Innovation, Entrepreneurship and Competitiveness

Supercapacitor reciprocity and response to linear current and voltage ramps

The focus in supercapacitor research typically falls into one of two categories: (i) the rational design and engineering of electrode materials and electrolyte formulation to achieve high performance devices at competitive costs, and (ii) the modeling of their resulting behavior in response to constant-current charging/discharging, cyclic voltammetry or impedance spectroscopy. However, less work

Circuit Theory and Applications
Innovation, Entrepreneurship and Competitiveness

Experimental comparison of integer/fractional-order electrical models of plant

In this paper, different integer and fractional-order models are studied from electrical point of view, these models are used to fit the measured impedance data for different types of fruits and vegetables. Experimental work is done on eight different models for six types of fruits to verify the best fitting model. Electric impedance is measured in the range of frequencies (200 mHz–200 Khz) using
Circuit Theory and Applications
Agriculture and Crops

All-Solid-State Double-Layer Capacitors Using Binderless Reduced Graphene Oxide Thin Films Prepared by Bipolar Electrochemistry

Bipolar electrochemistry is used as an economical, single-step, and scalable process for the oxidation of a wireless graphite substrate, and the subsequent electrophoretic deposition of graphene oxide thin film on a second wireless substrate. An all-solid-state symmetric double-layer capacitor (EDLC) using binderless reduced graphene oxide electrodes exhibited outstanding reversibility and

Energy and Water
Circuit Theory and Applications

Memcapacitor based charge pump

This paper proposes a charge pump based on a charge controlled memcapacitor. The operation of the charge pump is investigated along with the mathematical analysis of the memcapacitor. Different implementations of charge pump are summarized. The proposed charge pump has the capability of driving low input voltage in range of 200mv and the capability of operating at the low frequencies which makes

Circuit Theory and Applications

Chaotic system modelling using a neural network with optimized structure

In this work, the Artificial Neural Networks (ANN) are used to model a chaotic system. A method based on the Non-dominated Sorting Genetic Algorithm II (NSGA-II) is used to determine the best parameters of a Multilayer Perceptron (MLP) artificial neural network. Using NSGA-II, the optimal connection weights between the input layer and the hidden layer are obtained. Using NSGA-II, the connection

Artificial Intelligence
Circuit Theory and Applications

Chaotic system modelling using a neural network with optimized structure

In this work, the Artificial Neural Networks (ANN) are used to model a chaotic system. A method based on the Non-dominated Sorting Genetic Algorithm II (NSGA-II) is used to determine the best parameters of a Multilayer Perceptron (MLP) artificial neural network. Using NSGA-II, the optimal connection weights between the input layer and the hidden layer are obtained. Using NSGA-II, the connection

Artificial Intelligence
Circuit Theory and Applications

Finite precision logistic map between computational efficiency and accuracy with encryption applications

Chaotic systems appear in many applications such as pseudo-random number generation, text encryption, and secure image transfer. Numerical solutions of these systems using digital software or hardware inevitably deviate from the expected analytical solutions. Chaotic orbits produced using finite precision systems do not exhibit the infinite period expected under the assumptions of infinite

Circuit Theory and Applications
Software and Communications