about.jpg

Filter by

Solving Inverse Kinematics of a 7-DOF Manipulator Using Convolutional Neural Network

This paper presents a way to solve inverse kinematics of a 7-DOF manipulator using artificial neural networks. The manipulator consists of a 6-DOF articulated arm installed on a linear guide system to increase the workspace of the robot. The purpose of this paper is to provide an alternative to the traditional and complicated way to solve inverse kinematics by using artificial neural networks. The

Mechanical Design

Fractional-Order Control Scheme for Q-S Chaos Synchronization

In this paper, a fast control scheme is presented for the problem of Q-S synchronization between fractional chaotic systems with different dimensions and orders. Using robust control law and Laplace transform, a synchronization approach is designed to achieve Q-S synchronization between n-D and m-D fractional-order chaotic systems in arbitrary dimension d. This paper provides further contribution

Circuit Theory and Applications

Low Power Scalable Ternary Hybrid Full Adder Realization

Multi-level electronic systems offer speed and area simplicity, reducing the complexity of implementation and power dissipation. In this paper, a Hybrid ternary Full Adder (FA) is proposed using Conventional Complementary Metal Oxide Semiconductor (CCMOS), Double Pass-transistor Logic (DPL), and Pass Transistors (PT). The proposed FA is extended up to 64-bits to test scalability. To validate the

Circuit Theory and Applications

Identifying the Parameters of Cole Impedance Model Using Magnitude Only and Complex Impedance Measurements: A Metaheuristic Optimization Approach

Due to the good correlation between the physiological and pathological conditions of fruits and vegetables and their equivalent Cole impedance model parameters, an accurate and reliable technique for their identification is sought by many researchers since the introduction of the model in early 1940s. The nonlinear least squares (NLS) and its variants are examples of the conventional optimization

Circuit Theory and Applications

Design and Implementation of an Optimized Artificial Human Eardrum Model

This paper introduces a fractional-order eardrum Type-II model, which is derived using fractional calculus to reduce the number of elements compared to its integer-order counterpart. The proposed fractional-order model parameters are extracted and compared using five meta-heuristic optimization techniques. The CMOS implementation of the model is performed using the Design Kit of the Austria Mikro

Circuit Theory and Applications

Evaluation of Different Sarcasm Detection Models for Arabic News Headlines

Being sarcastic is to say something and to mean something else. Detecting sarcasm is key for social media analysis to differentiate between the two opposite polarities that an utterance may convey. Different techniques for detecting sarcasm are varying from rule-based models to Machine Learning and Deep Learning models. However, researchers tend to leverage Deep Learning in detecting sarcasm

Artificial Intelligence
Software and Communications

Detecting Mimikatz in Lateral Movements Using Mutex

Advanced Persistent Threat (APT) is a stealthy computer network attack. Its threat lies in the fact that unauthorized access to a network is gained and the attackers, whether a person or a group may remain undetected for an extended period. APT group can spread and gain access to the most valuable assets in the targeted organization. Depending on the tools used by APT group it can be hard and

Artificial Intelligence
Software and Communications

Inverse memrsitor emulator active Realizations

The paper aims to propose three different inverse memristor emulators based on serveral active blocks. One of the presented emulator realizes employing second generation current conveyor (CCII) andcanalog voltage multiplier with passive elements. The other two introduced emulators are designed using cureent feedback operational amplifier (CFOA) with two switches or two BJT transistor. One of the

Circuit Theory and Applications
Software and Communications

A Transfer Learning Approach for Emotion Intensity Prediction in Microblog Text

Emotional expressions are an important part of daily communication between people. Emotions are commonly transferred non verbally through facial expressions, eye contact and tone of voice. With the rise in social media usage, textual communication in which emotions are expressed has also witnessed a great increase. In this paper automatic emotion intensity prediction from text is addressed

Artificial Intelligence

Nonlinear charge-voltage relationship in constant phase element

The constant phase element (CPE) or fractional-order capacitor is an electrical device that has an impedance of the form Z(s)=1/Cαsα, where Cα is the CPE parameter and α is a fractional dispersion coefficient of values between 0 and 1. Here we show that in the time-domain the classical linear charge-voltage relationship of ideal capacitors, q=C·v, is not valid for CPEs. In fact the relationship is

Circuit Theory and Applications