about.jpg

Filter by

Human action recognition employing TD2DPCA and VQ

A novel algorithm for human action recognition in the transform domain is presented. This approach is based on Two- Dimensional Principal Component Analysis (2DPCA) and Vector Quantization (VQ). This technique reduces the computational complexity and the storage requirement by at least a factor of 45.27, and 12 respectively, while achieving the highest recognition accuracy, compared with the most

Artificial Intelligence

Meta-workflows: Pattern-based interoperability between Galaxy and Taverna

Taverna and Galaxy are two workflow systems developed specifically for bioinformatics applications. For sequence analysis applications, some tasks can be implemented easily on one system but would be difficult, or infeasible, to be implemented on the other. One solution to overcome this situation is to combine both tools in a unified framework that seamlessly makes use of the best features of each

Artificial Intelligence

WAMI: A web server for the analysis of minisatellite maps

Background. Minisatellites are genomic loci composed of tandem arrays of short repetitive DNA segments. A minisatellite map is a sequence of symbols that represents the tandem repeat array such that the set of symbols is in one-to-one correspondence with the set of distinct repeats. Due to variations in repeat type and organization as well as copy number, the minisatellite maps have been widely

Artificial Intelligence

Strain correction in interleaved strain-encoded (SENC) cardiac MR

The strain encoding (SENC) technique directly encodes regional strain of the heart into the acquired MR images and produces two images with two different tunings so that longitudinal strain, on the short-axis view, or circumferential strain on the long-axis view, are measured. Interleaving acquisition is used to shorten the acquisition time of the two tuned images by 50%, but it suffers from

Artificial Intelligence
Healthcare
Software and Communications
Innovation, Entrepreneurship and Competitiveness

A semi-supervised learning approach for soft labeled data

In some machine learning applications using soft labels is more useful and informative than crisp labels. Soft labels indicate the degree of membership of the training data to the given classes. Often only a small number of labeled data is available while unlabeled data is abundant. Therefore, it is important to make use of unlabeled data. In this paper we propose an approach for Fuzzy-Input Fuzzy

Artificial Intelligence
Software and Communications

Misfeasor classification and detection models using machine learning techniques

Misfeasors (or insiders) are considered among the most difficult intruders to detect due to their knowledge and authorization within the organization. Machine learning techniques have been widely used for intrusion detection but only little work has addressed the use of machine learning for detecting and classifying different types of insiders. The aim of this study is to exploit different

Artificial Intelligence

WASP: Wireless autonomous sensor prototype for Visual Sensor Networks

Visual Sensor Networks (VSNs) enable enhanced three-dimensional sensing of spaces and objects, and facilitate collaborative reasoning to open up a new realm of vision-based distributed smart applications including security/surveillance, healthcare delivery, traffic monitoring, just to name a few. However, such applications require sensor nodes that can efficiently process large volumes of visual

Artificial Intelligence

Ambient and wearable sensing for gait classification in pervasive healthcare environments

Pervasive healthcare environments provide an effective solution for monitoring the wellbeing of the elderly where the general trend of an increasingly ageing population has placed significant burdens on current healthcare systems. An important pervasive healthcare system functionality is patient motion analysis where gait information can be used to detect walking behavior abnormalities that may

Artificial Intelligence
Healthcare
Software and Communications

Correction of left ventricle strain signals estimated from tagged MR images

Strain measurement is a quantity used for assessing the regional function of the left ventricular (LV) of the heart. They are computed by tracking the motion of the non-invasive, virtual tags in the cardiac muscle with time. Tracking these tags gives information for each region of the cardiac muscle by quantifying its deformation during contraction (systolic period) and relaxation (diastolic

Artificial Intelligence

RFID-based indoors localization of tag-less objects

Object localization has become a necessary module in many radiofrequency identification (RFID) systems that require tracking features besides the conventional identification feature. A number of techniques exists in literature that uses the RFID signal information to locate the tagged objects, i.e. objects wearing RFID tags. Nevertheless, in many applications, it is required to track objects that

Artificial Intelligence