about.jpg

Filter by

CellSense: An accurate energy-efficient GSM positioning system

Context-aware applications have been gaining huge interest in the last few years. With cell phones becoming ubiquitous computing devices, cell phone localization has become an important research problem. In this paper, we present CellSense, which is a probabilistic received signal strength indicator (RSSI)-based fingerprinting location determination system for Global System for Mobile

Software and Communications

A 5-10GHz low power bang-bang all digital PLL based on programmable digital loop filter

This paper presents the design and the implementation of a low power bang-bang all digital phase locked loop (BBADPLL). The design of the proposed architecture is based on the programmable coefficients of the digital loop filter (DLF) that manages the tradeoffs between stability and jitter of a closed loop. A proposed simple digital controlled oscillator (DCO) based on three stages ring oscillator

Circuit Theory and Applications

A 16Gbps low power self-timed SerDes transceiver for multi-core communication

This paper presents a modified design for a self-timed SerDes transceiver that was recently published [1]. The new architecture overcomes the main problems that arise in [1], while offering the same advantages. Resistive termination is used instead of source matching to eliminate the need for Manchester coding in [1], this resistive termination increased the data rate to be 16Gbps compared to

Circuit Theory and Applications

Switched-capacitor dc-dc converters with output inductive filter

Analysis and optimization of switched-capacitor (SC) dc-dc converters with a series inductive filter are developed. The steady-state output impedance of such SC resonant converters is calculated for a 21 conversion ratio. In addition, the necessary conditions for proper application of the output inductive filter are derived. The proposed optimization methodology applies numerical optimization to

Circuit Theory and Applications

Distributed cooperative q-learning for power allocation in cognitive femtocell networks

In this paper, we propose a distributed reinforcement learning (RL) technique called distributed power control using Q-learning (DPC-Q) to manage the interference caused by the femtocells on macro-users in the downlink. The DPC-Q leverages Q-Learning to identify the sub-optimal pattern of power allocation, which strives to maximize femtocell capacity, while guaranteeing macrocell capacity level in

Software and Communications

Degrees of freedom for separated and non-separated half-duplex cellular MIMO two-way relay channels

We study a cellular setting in which an introduced multiple-antenna relay station (RS) can possibly assist the bidirectional communication between a multiple-antenna base station (BS) and a set of single-antenna mobile stations (MSs). Through a proposed six-phase communication protocol with arbitrary number of antennas and MSs, we characterize the maximum number of degrees of freedom (DoF) that

Software and Communications

On the ARQ protocols over the Z-interference channels: Diversity- multiplexing-delay tradeoff

We characterize the achievable three-dimensional tradeoff between diversity, multiplexing, and delay of the single antenna Automatic Retransmission reQuest (ARQ) Z-interference channel. Non-cooperative and cooperative ARQ protocols are adopted under these assumptions. Considering no cooperation exists, we study the achievable tradeoff of the fixed-power split Han-Kobayashi (HK) approach

Software and Communications

MIMO vehicular networks: Research challenges and opportunities

In this paper, we provide a review of the benefits of employing multiple-input multiple-output (MIMO) signal processing techniques in vehicular ad hoc networks (VANETs). These benefits include increasing the range of communication via beamforming, improving the reliability of communication via spatial diversity, increasing the throughput of the network via spatial multiplexing, and managing

Software and Communications

On the role of vehicular mobility in cooperative content caching

In this paper, we analyze the performance of cooperative content caching in vehicular ad hoc networks (VANETs). In particular, we characterize, using analysis and simulations, the behavior of the probability of outage (i.e. not finding a requested data chunk at a neighbor) under freeway vehicular mobility. First, we introduce a formal definition for the probability of outage in the context of

Software and Communications

MIMO VANETs: Research challenges and opportunities

In this paper, we provide a review of the benefits of employing multiple-input multiple-output (MIMO) processing techniques in vehicular ad hoc networks VANETs. These benefits include increasing the range of communication via beamforming, improving the reliability of communication via spatial diversity, increasing the throughput of the network via spatial multiplexing, and managing multiuser

Software and Communications