about.jpg

Low Power Scalable Ternary Hybrid Full Adder Realization

Multi-level electronic systems offer speed and area simplicity, reducing the complexity of implementation and power dissipation. In this paper, a Hybrid ternary Full Adder (FA) is proposed using Conventional Complementary Metal Oxide Semiconductor (CCMOS), Double Pass-transistor Logic (DPL), and Pass Transistors (PT). The proposed FA is extended up to 64-bits to test scalability. To validate the proposed full adder and calculate its performance analysis, the Cadence Virtuoso toolset is used at technology 130nm with supply voltage 0.9V. An extra transistor is added to overcome the sneak path

Circuit Theory and Applications

On-the-Fly Parallel Processing IP-Core for Image Blur Detection, Compression, and Chaotic Encryption Based on FPGA

This paper presents a 3 in 1 standalone FPGA system which can perform color image blur detection in parallel with compression and encryption. Both blur detection and compression are based on the 3-level Haar wavelet transform, which is used as a common building block to save the resources. The compression is based on performing the hard thresholding scheme followed by the Run Length Encoding (RLE) technique. The encryption is based on the 128-bit Advanced Encryption Standard (AES), which is considered one of the most secure algorithms. Moreover, the modified Lorenz chaotic system is combined

Circuit Theory and Applications

IoT ethics challenges and legal issues

IoT systems have different technologies such as: RIFD, NFC, 3G, 4G, and Sensors. Their function is to transfer very large sensitive and private data. There are many ethical challenges that need to be taken into consideration by individuals and companies that use this technology. Amongst the challenges is the user awareness of attack risks. This paper discusses different ethical and legal challenges that need to be taken in account for IoT health care applications during the near future. © 2017 IEEE.

Artificial Intelligence
Circuit Theory and Applications
Software and Communications

Fully balanced LED driving circuit for optogenetics stimulation

Implantable probes with built-in light emitters have a promising potential for a range of applications, in particular optogenetic neural stimulation. However, where soft encapsulation methods are used, lifetime will be a function of the quality of encapsulation and the driving mechanism. We have found that a balanced driving mechanism - whereby the integral voltage on encapsulated contacts, can significantly prolong lifetimes. As such, in this work, we have designed a driving circuit that drives current but ensures balanced electric fields with an error of less than 1%. The circuit has been

Circuit Theory and Applications
Software and Communications

Reactance-less RM relaxation oscillator using exponential memristor model

Recently, the memristor based relaxation oscillators become an important topic in circuit theory where the reactive elements are replaced by memristor which occupies a very small area. In this paper, a design of memristor-based relaxation oscillator is introduced based on exponential memristor model. Unlike previously published oscillators which were built based on a simple memristor model, the exponential model is used, as a generalized model, to verify the concept of memristor based RM oscillator using a model that has electrical characteristic very close to the fabricated device. First, the

Circuit Theory and Applications

Preface

[No abstract available]

Circuit Theory and Applications

Preface

[No abstract available]

Circuit Theory and Applications

Preface

[No abstract available]

Circuit Theory and Applications

Preface

[No abstract available]

Circuit Theory and Applications

PREFACE

[No abstract available]

Circuit Theory and Applications