Opportunistic secrecy with a strict delay constraint

Khalil K.
Koyluoglu O.O.
Gamal H.E.
Youssef M.

We investigate the delay limited secrecy capacity of the flat fading channel under two different assumptions on the available transmitter channel state information (CSI). The first scenario assumes perfect prior knowledge of both the main and eavesdropper channel gains. Here, upper and lower bounds on the delay limited secrecy capacity are derived, and shown to be tight in the high signal-to-noise ratio (SNR) regime. In the second scenario, only the main channel CSI is assumed to be available at the transmitter where, remarkably, we establish the achievability of a non-zero delay-limited secure rate, for a wide class of channel distributions, with a high probability. In the two cases, our achievability arguments are based on a novel two-stage key-sharing approach that overcomes the secrecy outage phenomenon observed in earlier works. © 1972-2012 IEEE.