madian.png

Prof. Ahmed H. Madian

Program Director of Electronics and Computer Engineering (ECE)

Faculty Office Ext.

1749

Faculty Building

UB2

Office Number

S09

Biography

Ahmed Madian (SM'12) is currently a Professor and director for Electronics and Computer Engineering Program, Faculty of Engineering and Applied Science, NILE University, Giza, Egypt on leave from the Egyptian Atomic Energy Authority. He is the former director of Microelectronics System Design Master Program from 2015 -2020. Also, He has been the director of Nanoelectronics Integrated System Design Research Center (NISC) since 2016 -2023. He has published more than 200 papers in international conferences and journals with total H-index 29. Also, he served on the many technical and organizing committees of many international conferences. He received many research grants as Principal Investigator (PI), CO-PI, or Consultant from different national/international organizations. Also, he has been a member of the National Radio of Science Committee (NRSC), ASRT since 2018-now. He is a member of the Information Technology and Communication Council, ASRT from 2021 to now. Dr. Madian is senior member IEEE. He is currently the IEEE Egypt Section chair and served as the IEEE Egypt section secretary/conference coordinator and member of the ExCom from 2020 – 2023. He served as technical program co-chair of many IEEE international conferences and as organizing committee of many IEEE events and student’s competition. He is a member of the steering committee of many IEEE conferences. He served in the higher council of Communication and Information Technology, Egyptian Academy for Science, research, and Technology (ASRT). He has been elected as a voting member of IEEE CASS Standards Activities subdivision. He organized many awareness sessions for proposal writing and fundraising for different IEEE units. He organized the Agri-hackathon as an outreach activity from IEEE CASS. 

Achievements
  • IEEE Egypt Section Chair 2024-2025.      
  • He is a co-founder of the IEEE Robotics and Automation Egypt chapter which won the Chapter of the Year Award region 8 for 2012.
  • He is also the founder of IEEE CASS technical chapter Egypt section won the Chapter of the Year Award Region 8 for 2023 and won IEEE-CASS outreach for many years.
  • He won the best outstanding section over Region 8 and the best outstanding young professional affinity group in Region 8.
  • He is the IEEE African Council Treasure 2024-2025.
  • Finally, he has been selected as Distinguished Lecturer for the Circuits and Systems Society (CASS) 2024-2025.
  • Dr. Madian won the Best Researcher award (Dr Hazem Ezzat Award 2017) for his outstanding research profile and El-Shrouk Academy Award for Scientific and Technological C
Recent Publications

Implementation of a Pulsed-Wave Spectral Doppler Module on a Programmable Ultrasound System

Pulsed wave Doppler ultrasound is commonly used in the diagnosis of cardiovascular and blood flow abnormalities. Doppler techniques have gained clinical significance due to its safety, real-time performance and affordability. This work presents the development of a pulsed wave spectral Doppler module, which was integrated into a reconfigurable ultrasound system. The targeted system adopts a

Healthcare
Circuit Theory and Applications
Mechanical Design
Innovation, Entrepreneurship and Competitiveness

Dynamics of fractional and double-humped logistic maps versus the conventional one

This paper presents the dynamic analysis of two discrete logistic chaotic maps versus the conventional map. The first map is the fractional logistic map with the extra degrees of freedom provided by the added number of variables. It has two more variables over the conventional one. The second map is the double-humped logistic map. It is a fourth-order map which increases the non-linearity over the

Circuit Theory and Applications

FPGA Speech Encryption Realization Based on Variable S-Box and Memristor Chaotic Circuit

This paper introduces a new encryption/decryption scheme based on a dynamic substitution box concept. Values of the proposed S-Box are different for each sample depending on the behavior of a memristor-based chaotic system. MATLAB simulations and FPGA implementation for the circuit are presented with throughput 4.266 Gbit/s. Also, FPGA realization for encryption/decryption scheme is proposed

Circuit Theory and Applications
Software and Communications

Generalized double-humped logistic map-based medical image encryption

This paper presents the design of the generalized Double Humped (DH) logistic map, used for pseudo-random number key generation (PRNG). The generalized parameter added to the map provides more control on the map chaotic range. A new special map with a zooming effect of the bifurcation diagram is obtained by manipulating the generalization parameter value. The dynamic behavior of the generalized

Circuit Theory and Applications

Automatic RTL coding correction Linting tool for critical issues

This paper posits an automatic handling to some of the most common RTL critical issues in the verification process. In this paper, we propose an automatic linting tool to handle some causes of intentional latches generated in the synthesis process and clock gating timing violation. Therefore, no need to waste verification time to dive through long codes to handle them manually. The proposed tool

Circuit Theory and Applications

FPGA Implementation of X- and Heart-shapes Controllable Multi-Scroll Attractors

This paper proposes new multi-scrolls chaotic systems which is called the X-shape. The purpose is to have more complex systems and flexible ranges of the chaotic behavior. The proposed X-shape is a combination between V-shape and Λ-shape. This paper also represents the Heart-shape which considered a special case of the X-shape. The system complexity has been measured by MLE and compared with V

Circuit Theory and Applications

Fractional-Order Relaxation Oscillators Based on Op-Amp and OTRA

This paper introduces closed formulas of two topologies of fractional-order relaxation oscillators. One of these topologies is based on Operational Amplifier (Op-Amp) and the other one depends on Operational Operational Trans-Resistance Amplifier (OTRA). Special cases for each topology are also provided. The advantage of these designs comes from the added extra degree of freedom presented by the

Circuit Theory and Applications

A generalized family of memristor-based voltage controlled relaxation oscillator

Recently, memristive oscillators are a significant topic in the nonlinear circuit theory where there is a possibility to build relaxation oscillators without existence of reactive elements. In this paper, a family of voltage-controlled memristor-based relaxation oscillator including two memristors is presented. The operation of two memristors-based voltage relaxation oscillator circuits is

Circuit Theory and Applications

Radiographic images fractional edge detection based on genetic algorithm

Recently, fractional edge detection algorithms have gained focus of many researchers. Most of them concern on the fractional masks implementation without optimization of threshold levels of the algorithm for each image. One of the main problems of the edge detection techniques is the choice of optimal threshold for each image. In this paper, the genetic algorithm has been used to get the optimal

Circuit Theory and Applications
Research Tracks
  • Circuit theory
  • Low-voltage analog CMOS circuit design
  • Current-mode analog signal processing
  • Memristors
  • Fractional systems
  • VLSI, Encryption systems and mixed/digital applications on field-programmable gate arrays
Projects
3
Research Project

Wireless Monitoring of Fruit Growth Using an Electrical BioImpedance Sensor Device

The idea of this project is to graph the quality of fruits and vegetables similar to ECG in humans. The purpose of this project is to build a prototype for a portable wireless electronic device capable of measuring live tissue with fruits or vegetables using bioimpedance and some mathematical & electrical models then transmitting data to the base station. This project will add scientific and
1
Research Project

Smart Agriculture in Internet of Things Era

Efficient management of the Earth’s water resources has surged in urgency due to the confluence of several factors, including population growth, climate change, urbanization, etc. Irrigation stands out as one of the major sources of water utilization that can benefit drastically from novel approaches to water management. The nominal method for smart irrigation is to use some weather conditions to
3
Research Project

Two Port Fractional-order Oscillators and Filters Suitable for Tissue Modeling

Objective: This project aims to study the relation between the mathematical fundamentals of fractional calculus and the concept of two-port circuit networks in the design of oscillators and filters with their analyses. These concepts will be applied to the Cole-Cole model, suitable for agriculture and biomedical applications tissue modelling. Outcomes: Literature Surveys (2 Journals + 2 Chapters)