about.jpg

Filter by

Stability and delay analysis for cooperative relaying with multi-access transmission

We consider a cooperative relaying system with two source terminals, one full duplex relay, and a common destination. Each terminal has a local traffic queue while the relay has two relaying queues to store the relayed source packets. We assume that the source terminals transmit packets in orthogonal frequency bands. In contrast to previous work which assumes a time division multi-access

Software and Communications

On the Degrees of Freedom of the Two-Cell Two-Hop MIMO Network with Dedicated and Shared Relays

We investigate the degrees of freedom (DoF) of the downlink of a cellular relay network. In this network, two base stations transmit to two mobile stations via relays due to the absence of a direct communication link. Each base station and mobile station is equipped with M antennas. Each base station has two messages; one to each mobile station, and uses two relays to transmit to the mobile

Software and Communications

On spectrum sharing between energy harvesting cognitive radio users and primary users

This paper investigates the maximum throughput for a rechargeable secondary user (SU) sharing the spectrum with a primary user (PU) plugged to a reliable power supply. The SU maintains a finite energy queue and harvests energy from natural resources and primary radio frequency (RF) transmissions. We propose a power allocation policy at the PU and analyze its effect on the throughput of both the PU

Software and Communications

On orthogonal band allocation for multiuser multiband cognitive radio networks: Stability analysis

In this work, we study the problem of band allocation of Mi buffered (i.e., with data queues capable of storing incoming traffic packets) secondary users (SUs) to Mp primary frequency bands licensed to (owned by) Mp buffered primary users. The bands are assigned to SUs in an orthogonal (one-to-one) fashion, such that neither band sharing nor multiband allocations are permitted. In order to study

Software and Communications

Energy-efficient cooperative relaying protocol for full-duplex cognitive radio users and delay-aware primary users

This paper considers a network in which a primary user (PU) may cooperate with a cognitive radio (CR) user for transmission of its data packets. The PU is assumed to be a buffered terminal operating in a time-slotted fashion. We develop an energy-efficient protocol that involves cooperation and coordination between primary and secondary users. To satisfy certain quality-of-service requirements

Software and Communications

Power-optimal feedback-based random spectrum access for an energy harvesting cognitive user

In this paper, we study and analyze cognitive radio networks in which secondary users (SUs) are equipped with energy harvesting (EH) capability. We design a random spectrum sensing and access protocol for the SU that exploits the primary link's feedback and requires less average sensing time. Unlike previous works proposed earlier in literature, we do not assume perfect feedback. Instead, we take

Software and Communications

Effective capacity and delay optimization in cognitive radio networks

In this paper, we study the fundamental trade-off between delay-constrained primary and secondary users in cognitive radio networks. In particular, we characterize and optimize the trade-off between the secondary user (SU) effective capacity and the primary user (PU) average packet delay. Towards this objective, we employ Markov chain models to quantify the SU effective capacity and average packet

Software and Communications

Cooperative Q-learning techniques for distributed online power allocation in femtocell networks

In this paper, we address the problem of distributed interference management of femtocells that share the same frequency band with macrocells using distributed multi-agent Q-learning. We formulate and solve two problems representing two different Q-learning algorithms, namely, femto-based distributed and sub-carrier-based distributed power controls using Q-learning (FBDPC-Q and SBDPC-Q). FBDPC-Q

Software and Communications

Cognitive Radio Networks with Probabilistic Relaying: Stable Throughput and Delay Tradeoffs

This paper studies fundamental throughput and delay tradeoffs in cognitive radio systems with cooperative secondary users. We focus on randomized cooperative policies, whereby the secondary user (SU) serves either its own queue or the primary users (PU) relayed packets queue with certain service probability. The proposed policy opens room for trading the PU delay for enhanced SU delay, and vice

Software and Communications

Optimal spectrum access for a rechargeable cognitive radio user based on energy buffer state

This paper investigates the maximum throughput for a rechargeable secondary user (SU) sharing the spectrum with a primary user (PU) plugged to a reliable power supply. The SU maintains a finite energy queue and harvests energy from natural resources, e.g., solar, wind and acoustic noise. We propose a probabilistic access strategy by the SU based on the number of packets at its energy queue. In

Software and Communications