about.jpg

Filter by

Three Fractional-Order-Capacitors-Based Oscillators with Controllable Phase and Frequency

This paper presents a generalization of six well-known quadrature third-order oscillators into the fractional-order domain. The generalization process involves replacement of three integer-order capacitors with fractional-order ones. The employment of fractional-order capacitors allows a complete tunability of oscillator frequency and phase. The presented oscillators are implemented with three

Circuit Theory and Applications

Generalized family of fractional-order oscillators based on single CFOA and RC network

This paper presents a generalized family of fractional-order oscillators based on single CFOA and RC network. Five RC networks are investigated with their general state matrix, and design equations. The general oscillation frequency, condition and the phase difference between the oscillatory outputs are introduced in terms of the fractional order parameters. They add extra degrees of freedom which

Circuit Theory and Applications

Chaotic systems based on jerk equation and discrete maps with scaling parameters

In the recent decades, applications of chaotic systems have flourished in various fields. Hence, there is an increasing demand on generalized, modified and novel chaotic systems. In this paper, we combine the general equation of jerk-based chaotic systems with simple scaled discrete chaotic maps. Numerical simulations of the properties of two systems, each with four control parameters, are

Circuit Theory and Applications

Low-voltage commercial super-capacitor response to periodic linear-with-time current excitation: A case study

The response of a commercial super-capacitor to an applied periodic current excitation in the form of a triangular waveform is investigated in this study. This waveform has a linear-with-time variation which enables linear charging and discharging of the device. A model consisting of a linear resistance Rs and a constant phase element is used to describe the super-capacitor impedance and

Circuit Theory and Applications

Generalized dynamic switched synchronization between combinations of fractional-order chaotic systems

This paper proposes a novel generalized switched synchronization scheme among n fractional-order chaotic systems with various operatingmodes. Digital dynamic switches and dynamic scaling factors are employed, which offermany new capabilities. Dynamic switches determine the role of each system as a master or a slave. A system can either have a fixed role throughout the simulation time (static

Circuit Theory and Applications

On a simple approach for Q-S synchronisation of chaotic dynamical systems in continuous-time

In this paper, the problem of Q-S synchronisation for arbitrary dimensional chaotic dynamical systems in continuous-time is investigated. Based on nonlinear control method, we would like to present a constructive scheme to study the Q-S synchronisation between n-dimensional master chaotic system and m-dimensional slave chaotic system in arbitrary dimension. The new derived synchronisation result

Circuit Theory and Applications

A new fractional hybrid chaos synchronisation

Over the last decades, synchronisation of chaotic systems has become an active research area and has been extensively and intensively studied due to the variety of important applications. Different types of chaos synchronisation have been presented, and many various methods and techniques for chaos synchronisation have been reported to investigate some types of chaos. In this paper, by combining

Circuit Theory and Applications

New Trends on Modeling, Design, and Control of Chaotic Systems

[No abstract available]

Circuit Theory and Applications

Robust control for asynchronous switched nonlinear systems with time varying delays

In this article a novel robust controller for the control of switched nonlinear systems with asynchronous switching is proposed considering state delays. The proposed approach improves the actual methodologies found in literature in which the disturbance rejection properties of these two methodologies consider a disturbance equal to zero but the proposed robust controller considers any kind of

Circuit Theory and Applications

Optimizing Cooperative Cognitive Radio Networks Performance with Primary QoS Provisioning

We consider the problem of optimizing the performance of a cooperative cognitive radio user subject to constraints on the quality-of-service (QoS) of the primary user (PU). In particular, we design the probabilistic admission control parameter of the PU packets in the secondary user (SU) relaying queue and the randomized service parameter at the SU under non-work-conserving (non-WC) and WC

Software and Communications