about.jpg

Filter by

Two-dimensional front-tracking model for film evaporation

To understand the physical process involved in film evaporation, a new numerical model is created using coupled quadratic finite element formulation of the conservation equations. The heat transport equation is solved in the three different phases (solid, liquid and vapor) while the Navier-Stokes equation are solved in the two fluids. The gradient discontinuity at the liquid vapor interface

Energy and Water
Circuit Theory and Applications
Mechanical Design

Symbol based log-MAP in concatenated LDPC-convolutional codes

In this paper we study the use of a high rate Low Density Parity Check (LDPC) codes in concatenated coding structures. Specifically, we use the LDPC code as an outer code, with a convolutional code as an inner code. We decode the convolutional code using a symbol based Log-MAP (Maximum a posteriori probability) decoder, and feed the soft outputs of this decoder into a non-binary Galois Field LDPC

Software and Communications

A deterministic large-scale device-free passive localization system for wireless environments

The widespread usage of wireless local area networks and mobile devices has fostered the interest in localization systems for wireless environments. The majority of research in the context of wirelessbased localization systems has focused on device-based active localization, in which a device is attached to tracked entities. Recently, device-free passive localization (DfP) has been proposed where

Software and Communications
Mechanical Design

Power control for constrained throughput maximization in spectrum shared networks

We investigate power allocation for users in a shared spectrum network. In such a network, the primary (licensed) users communicate under a minimum guaranteed quality of service (QoS) requirements, whereas the secondary users opportunistically access the primary band. Our objective is to find a power control scheme that determines the transmit power for both primary and secondary users so that the

Software and Communications

HyberLoc: Providing physical layer location privacy in hybrid sensor networks

In many hybrid wireless sensor networks' applications, sensor nodes are deployed in hostile environments where trusted and un-trusted nodes co-exist. In anchor-based hybrid networks, it becomes important to allow trusted nodes to gain full access to the location information transmitted in beacon frames while, at the same time, prevent un-trusted nodes from using this information. The main

Software and Communications

Adaptive linearly constrained minimum variance beamforming for multiuser cooperative relaying using the kalman filter

In this paper, we consider a wireless communication scenario with multiple source-destination pairs communicating through several cooperative amplify-and-forward relay terminals. The relays are equipped with multiple antennas that receive the source signals and transmit them to the destination nodes. We develop two iterative relay beamforming algorithms that can be applied in real-time. In both

Software and Communications

CellSense: A probabilistic RSSI-based GSM positioning system

Context-aware applications have been gaining huge interest in the last few years. With cell phones becoming ubiquitous computing devices, cell phone localization has become an important research problem. In this paper, we present CellSense, a probabilistic RSSI-based fingerprinting location determination system for GSM phones.We discuss the challenges of implementing a probabilistic fingerprinting

Software and Communications

Hidden anchor: A lightweight approach for physical layer location privacy

In hybrid wireless sensor networks, where trusted and un-trusted nodes coexist, it becomes important to allow trusted nodes to share information, especially, location information and prevent un-trusted nodes from gaining access to this information. We focus on anchor-based localization algorithms in WSNs, where a small set of specialized nodes, that is, anchor nodes, broadcast their location to

Software and Communications

Counter based CMOS temperature sensor for low frequency applications

A simple temperature sensor in Bi-CMOS technology is proposed for applications with low frequency temperature variations in addition to a complete analysis of each block in the system. Most CMOS temperature sensors are based on the temperature characteristics of parasitic bipolar transistors. Two important factors need to be met in the design of the sensor: the first is the accuracy of the sensor

Circuit Theory and Applications

Gain-band self-clocked comparator for DC-DC converters hysteretic control

A novel digital comparator topology is presented. The proposed digital comparator cell uses transistors' ratio to program a fixed comparison level. A double-bound hysteretic control comparator, for DC-DC converters, is built using the proposed digital comparator cell. The hysteretic-band width variation, due to process effects, decreases with increased preamplifier stage gain and constitutes a

Circuit Theory and Applications