Atmospheric pressure air microplasma current time series for true random bit generation
Generating true random bits of high quality at high data rates is usually viewed as a challenging task. To do so, physical sources of entropy with wide bandwidth are required which are able to provide truly random bits and not pseudorandom bits, as it is the case with deterministic algorithms and chaotic systems. In this work we demonstrate a reliable high-speed true random bit generator (TRBG) device based on the unpredictable electrical current time series of atmospheric pressure air microplasma (APAMP). After binarization of the sampled current time series, no further post-processing was needed in order for the bitstreams to pass all 15 tests of the NIST SP 800-22 statistical test suite. Several configurations of the system have been successfully tested at different sampling rates up to 100 MS/s, and with different inter-electrode distances giving visible/non-visible optical emissions. The cost-effectiveness, simplicity and ease of implementation of the proposed APAMP system compared to others makes it a very promising solution for portable TRBGs. © 2020, The Author(s).