about.jpg
Conference Paper

Arabic English Speech Emotion Recognition System

By
Seknedy M.E.
Fawzi S.

The Speech Emotion Recognition (SER) system is an approach to identify individuals' emotions. This is important for human-machine interface applications and for the emerging Metaverse. This work presents a bilingual Arabic-English speech emotion recognition system based on EYASE and RAVDESS datasets. A novel feature set was composed by using spectral and prosodic parameters to obtain high performance at a low computational cost. Different classification models were applied. These machine learning classifiers are Random Forest, Support Vector Machine, Logistic Regression, Multi-Layer Perceptron, and Ensemble learning. The proposed feature set performance was compared to the "Interspeech 2009"challenge feature set, which is considered a benchmark in the field. Promising results were obtained using the proposed feature sets. SVM resulted in the best emotion recognition rate and execution performance. The best accuracies achieved were 85% on RADVESS, and 64% on EYASE. Ensemble learning detected the valence emotion with 90% on RADVESS, and 87.6% on EYASE. © 2023 IEEE.